Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: ex(sinx+cosx)e^x(sinx+cosx)

Answer

The correct answer is: I=exsinx+C∴I=e^x sinx+C
Let I=ex(sinx+cosx)dxI=∫e^x(sinx+cosx)dx
Let ƒ(x)=sinxƒ(x)=sinx
ƒ(x)=cosx⧠ƒ'(x)=cosx
I=ex[ƒ(x)+ƒ(x)]dx⧠I=∫e^x[{ƒ(x)+ƒ'(x)}]dx
It is known that,ex[ƒ(x)+ƒ(x)]dx=exƒ(x)+C∫e^x[{ƒ(x)+ƒ'(x)}]dx=e^x ƒ(x)+C
I=exsinx+C∴I=e^x sinx+C