Question
Mathematics Question on integral
Integrate the function: ex(1+cosx1+sinx)
Answer
The correct answer is: extan2x+C
ex(1+cosx1+sinx)
=(2cos22xex2sin2x+2cos2x+2sin2xcos2x)
=2cos22xex(sin2x+cos2x)2
=21ex.((cos2x)(sin2x+cos2x))2
=21ex[tan2x+1]2
=21e2(1+tan2x)2
=21ex[1+tan22x+2tan2x]
=21ex[sec22x+2tan2x]
(1+cosx)ex(1+sinx)dx=ex[21sec22x+tan2x]...(1)
Let tan2x=ƒ(x)ƒ′(x)=21sec22x
It is known that,∫ex[ƒ(x)+ƒ′(x)]dx=exƒ(x)+C
From equation(1),we obtain
∫(1+cosx)ex(1+sinx)dx=extan2x+C