Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: ex(1+sinx1+cosx)e^x(\frac{1+sinx}{1+cosx})

Answer

The correct answer is: extanx2+Ce^xtan\frac{x}{2}+C
ex(1+sinx1+cosx)e^x(\frac{1+sinx}{1+cosx})
=(exsin2x2+cos2x2+2sinx2cosx22cos2x2)=\bigg(\frac{e^x\frac{sin^2x}{2}+\frac{cos^2x}{2}+2sin\frac{x}{2}cos\frac{x}{2}}{2cos^2\frac{x}{2}}\bigg)
=ex(sinx2+cosx2)22cos2x2=\frac{e^x(sin\frac{x}{2}+cos\frac{x}{2})^2}{2cos^2\frac{x}{2}}
=12ex.((sinx2+cosx2)(cosx2))2=\frac{1}{2}e^x.\bigg(\frac{(sin\frac{x}{2}+cos\frac{x}{2})}{(cos\frac{x}{2})}\bigg)^2
=12ex[tanx2+1]2=\frac{1}{2}e^x[tan\frac{x}{2}+1]^2
=12e2(1+tanx2)2=\frac{1}{2}e^2(1+tan\frac{x}{2})^2
=12ex[1+tan2x2+2tanx2]=\frac{1}{2}e^x[1+tan^2\frac{x}{2}+2tan\frac{x}{2}]
=12ex[sec2x2+2tanx2]=\frac{1}{2}e^x[sec^2\frac{x}{2}+2tan\frac{x}{2}]
ex(1+sinx)dx(1+cosx)=ex[12sec2x2+tanx2]...(1)\frac{e^x(1+sinx)dx}{(1+cosx)}=e^x[\frac{1}{2}sec^2\frac{x}{2}+tan\frac{x}{2}]...(1)
Let tanx2=ƒ(x)ƒ(x)=12sec2x2tan\frac{x}{2}=ƒ(x) \,\,ƒ'(x)=\frac{1}{2}sec^2 \frac{x}{2}
It is known that,ex[ƒ(x)+ƒ(x)]dx=exƒ(x)+C∫e^x[ƒ(x)+ƒ'(x)]dx=e^x ƒ(x)+C
From equation(1),we obtain
ex(1+sinx)(1+cosx)dx=extanx2+C∫\frac{e^x(1+sinx)}{(1+cosx)}dx=e^xtan\frac{x}{2}+C