Question
Mathematics Question on integral
Integrate the function: e2xsinx
Answer
The correct answer is: I=5e2x[2sinx−cosx]+C
Let I=∫e2xsinxdx...(1)
Integrating by parts,we obtain
I=sinx∫e2xdx−∫[(dxd−sinx)∫e2xdx]dx
⇒I=sinx.2e2x−∫cosx.2e2xdx
⇒I=e2xsin2x−21∫e2xcosxdx
Again integrating by parts,we obtain
I=2e2x.sinx−21[cosx∫e2xdx−∫(dxdcosx)∫e2xdx]dx
⇒I=2e2xsinx−21[cosx.2e2x−∫(−sinx)2e2xdx]
⇒I=2e2xsinx−21[2e2xcosx+21∫e2xsinxdx]
⇒I=2e2xsinx−4e2xcosx−41I[From(1)]
⇒I=41I=2e2x.sinx−4e2xcosx
⇒45I=2e2xsinx−4e2xcosx
⇒I=54[2e2xsinx−4e2xcosx]+C
⇒I=5e2x[2sinx−cosx]+C