Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: e2xsinxe^{2x} sinx

Answer

The correct answer is: I=e2x5[2sinxcosx]+CI=\frac{e^{2x}}{5}[2sinx-cosx]+C
Let I=e2xsinxdx...(1)I=∫e^{2x} sinx dx...(1)
Integrating by parts,we obtain
I=sinxe2xdx[(ddxsinx)e2xdx]dxI=sinx∫e^{2x} dx-∫[(\frac{d}{dx}-sinx)∫e^{2x} dx]dx
I=sinx.e2x2cosx.e2x2dx⇒I=sinx.\frac{e^{2x}}{2}-∫cosx.\frac{e^{2x}}{2}dx
I=e2xsinx212e2xcosxdx⇒I=e^{2x}sin\frac{x}{2}-\frac{1}{2}∫e^{2x}cosx\, dx
Again integrating by parts,we obtain
I=e2x.sinx212[cosxe2xdx(ddxcosx)e2xdx]dxI=\frac{e^{2x}.sinx}{2}-\frac{1}{2}[cosx∫e^{2x}dx-∫(\frac{d}{dx}cosx)∫e^{2x}dx]dx
I=e2xsinx212[cosx.e2x2(sinx)e2x2dx]⇒I=\frac{e^{2x}sinx}{2}-\frac{1}{2}[cosx.\frac{e^{2x}}{2}-∫(-sinx)\frac{e^{2x}}{2}dx]
I=e2xsinx212[e2xcosx2+12e2xsinxdx]⇒I=\frac{e^{2x}sinx}{2}-\frac{1}{2}[\frac{e^{2x}cosx}{2}+\frac{1}{2}∫e^{2x}sinx dx]
I=e2xsinx2e2xcosx414I[From(1)]⇒I=\frac{e^{2x}sinx}{2}-\frac{e^{2x}cosx}{4}-\frac{1}{4}I [From (1)]
I=14I=e2x.sinx2e2xcosx4⇒I=\frac{1}{4}I=\frac{e^{2x}.sinx}{2}-\frac{e^{2x}cosx}{4}
54I=e2xsinx2e2xcosx4⇒\frac{5}{4}I=\frac{e^{2x}sinx}{2}-\frac{e^{2x}cosx}{4}
I=45[e2xsinx2e2xcosx4]+C⇒I=\frac{4}{5}[\frac{e^{2x}sinx}{2}-\frac{e^{2x}cosx}{4}]+C
I=e2x5[2sinxcosx]+C⇒I=\frac{e^{2x}}{5}[2sinx-cosx]+C