Question
Question: Integrate the following trigonometric term: \(\int {\cos 3x\cos 4x.dx} \)...
Integrate the following trigonometric term:
∫cos3xcos4x.dx
Solution
Hint- in order to solve such types of integral first try to simplify the terms with the help of some common trigonometric identities and then proceed with the integration part.
Complete step-by-step solution -
To find out ∫cos3xcos4x.dx
By multiplying the given integral by 22 , we won’t alter the integral but will bring it to satisfy some common trigonometric identity
22×∫cos3xcos4x.dx=21∫2cos3xcos4x.dx
Now, first solving the internal part of the integral.
As we know the trigonometric identity
2cosAcosB=cos(A+B)+cos(A−B)
Using the above formula in the integral we get
⇒21∫2cos3xcos4x.dx ⇒21∫[cos(4x+3x)+cos(4x−3x)]dx ⇒21∫[cos7x+cosx]dx ⇒21∫cos7x.dx+21∫cosx.dx
Now as we know the formula of integral for cosine which is
∫cosθ.dθ=sinθ
So using the same formula, we get the value of the integral which is:
⇒21∫cos7x.dx+21∫cosx.dx =217sin7x+21sinx =14sin7x+2sinx
Hence, the value of the given integral is 14sin7x+2sinx .
Note- In order to solve such questions related to integral of complex trigonometric identity, always try to simplify the terms in the integral part before moving to the integral part of the solution. The trigonometric identity mentioned along with the solution which helps in simplification of terms is very useful and must be remembered. Also remember the formulas for integration of some general terms.