Solveeit Logo

Question

Question: Integrate the following question. \(\int {\dfrac{{dx}}{{\left( {1 + \sqrt x } \right)\left( {\sqrt...

Integrate the following question.
dx(1+x)(xx2) is equal to\int {\dfrac{{dx}}{{\left( {1 + \sqrt x } \right)\left( {\sqrt {x - {x^2}} } \right)}}{\text{ is equal to}}}
A. 1+x(1x)2+c B. 1+x(1+x)2+c C. 1x(1x)2+c D. 2(x1)1x+c  {\text{A}}{\text{. }}\dfrac{{1 + \sqrt x }}{{{{\left( {1 - x} \right)}^2}}} + c \\\ {\text{B}}{\text{. }}\dfrac{{1 + \sqrt x }}{{{{\left( {1 + x} \right)}^2}}} + c \\\ {\text{C}}{\text{. }}\dfrac{{1 - \sqrt x }}{{{{\left( {1 - x} \right)}^2}}} + c \\\ {\text{D}}{\text{. }}\dfrac{{2\left( {\sqrt x - 1} \right)}}{{\sqrt {1 - x} }} + c \\\

Explanation

Solution

Hint: When you see this type of question it seems very complex so to make it easy use the substitution method put x=sinθ\sqrt x = \sin \theta and solve further as a simple integration question.

Complete step-by-step solution -
x=sinθ\because \sqrt x = \sin \theta
On differentiating we get
12xdx=cosθdθ\Rightarrow \dfrac{1}{{2\sqrt x }}dx = \cos \theta d\theta
dx=2xcosθdθ\Rightarrow dx = 2\sqrt x \cos \theta d\theta (x=sinθ)\left( {\because \sqrt x = \sin \theta } \right)
dx=2sinθcosθdθ\Rightarrow dx = 2\sin \theta \cos \theta d\theta
We have to find
dx(1+x)(xx2)\int {\dfrac{{dx}}{{\left( {1 + \sqrt x } \right)\left( {\sqrt {x - {x^2}} } \right)}}}
(x=sinθ,x=sin2θ)\left( {\because \sqrt x = \sin \theta ,\therefore x = {{\sin }^2}\theta } \right)
(xx2=x(1x)=sin2θ(1sin2θ)=sinθ.cosθ)\left( {\sqrt {x - {x^2}} = \sqrt {x\left( {1 - x} \right)} = \sqrt {{{\sin }^2}\theta \left( {1 - {{\sin }^2}\theta } \right)} = \sin \theta .\cos \theta } \right)
On putting the values of dx and x\sqrt x we get

2sinθcosθdθ(1+sinθ)sinθ.cosθ=2dθ(1+sinθ)\Rightarrow \int {\dfrac{{2\sin \theta \cos \theta d\theta }}{{\left( {1 + \sin \theta } \right)\sin \theta .\cos \theta }}} = 2\int {\dfrac{{d\theta }}{{\left( {1 + \sin \theta } \right)}}}
On multiplying by (1sinθ)\left( {1 - \sin \theta } \right)on numerator and denominator both we get
2(1sinθ)(1sin2θ)dθ=21sinθcos2θdθ\Rightarrow 2\int {\dfrac{{\left( {1 - \sin \theta } \right)}}{{\left( {1 - {{\sin }^2}\theta } \right)}}d\theta = 2\int {\dfrac{{1 - \sin \theta }}{{{{\cos }^2}\theta }}d\theta } } (1sin2θ=cos2θ)\left( {\because 1 - {{\sin }^2}\theta = {{\cos }^2}\theta } \right)
\Rightarrow \left\\{ {\int {{{\sec }^2}\theta d\theta - \int {\left( {\tan \theta .\sec \theta } \right)d\theta } } } \right\\} (1cos2θ=sec2θ)\left( {\because \dfrac{1}{{{{\cos }^2}\theta }} = {{\sec }^2}\theta } \right)
2(tanθsecθ)+c\Rightarrow 2\left( {\tan \theta - \sec \theta } \right) + c (sec2θdθ=tanθ)(secθ.tanθdθ=tanθ)\left( {\because \int {{{\sec }^2}\theta d\theta = \tan \theta } } \right)\left( {\because \int {\sec \theta .\tan \theta d\theta = \tan \theta } } \right)
=2(x1x11x)+c= 2\left( {\sqrt {\dfrac{x}{{1 - x}}} - \dfrac{1}{{\sqrt {1 - x} }}} \right) + c (sinx=x,tanx=x1x,secx=11x)\left( {\because \sin x = \sqrt x ,\therefore \tan x = \dfrac{{\sqrt x }}{{\sqrt {1 - x} }},\therefore \sec x = \dfrac{1}{{\sqrt {1 - x} }}} \right)
=2(x1)1x+c\dfrac{{2\left( {\sqrt x - 1} \right)}}{{\sqrt {1 - x} }} + c
Hence option D is the correct option.

Note: These are some special types of questions which are easily solved by substitution method. If you solve it by usual method it will go very long or it will not be solved. So proceed from the substitution method and use simple integration and simple trigonometric results to get an answer.