Solveeit Logo

Question

Question: Integrate the following integral: \[\int {\sin mx\cos nx dx} ,m \ne n\]....

Integrate the following integral:
sinmxcosnxdx,mn\int {\sin mx\cos nx dx} ,m \ne n.

Explanation

Solution

Hint:Break the given integral into two parts using trigonometric identities

We have the given integral as
sinmxcosnxdx\int {\sin mx\cos nxdx}
Now, divide and multiply by 2,
=122sinmxcosnxdx= \dfrac{1}{2}\int {2\sin mx\cos nxdx}
We know the identity
2sinAcosB=sin(A+B)+sin(AB)2\sin A\cos B = \sin (A + B) + \sin (A - B)
Using this identity, such that A=mxA = mxand B=nxB = nx we get,
=12sin(mx+nx)+sin(mxnx)dx= \dfrac{1}{2}\int {\sin (mx + nx) + \sin (mx - nx)} dx
=12sin(m+n)x+sin(mn)xdx= \dfrac{1}{2}\int {\sin (m + n)x + \sin (m - n)x} dx
We know that sinaxdx=cosaxa\int {\sin ax} dx = \dfrac{{ - \cos ax}}{a}
Therefore, we get,
=12(cos(m+n)m+ncos(mn)mn)+c= \dfrac{1}{2}\left( {\dfrac{{ - \cos (m + n)}}{{m + n}} - \dfrac{{\cos (m - n)}}{{m - n}}} \right) + c
Where cc is an integration constant.

Note: To solve these types of questions, we must have an adequate knowledge of various integration properties and identities, evaluating the integral within such parameters, will lead towards the required solution.