Solveeit Logo

Question

Question: Integrate the following: \(\int {\dfrac{{f\left( x \right)g'\left( x \right) - f'\left( x \right)g...

Integrate the following:
f(x)g(x)f(x)g(x)f(x)g(x)[log(g(x))log(f(x))]dx=\int {\dfrac{{f\left( x \right)g'\left( x \right) - f'\left( x \right)g\left( x \right)}}{{f\left( x \right)g\left( x \right)}}\left[ {\log \left( {g\left( x \right)} \right) - \log \left( {f\left( x \right)} \right)} \right]dx = }
A) log(g(x)f(x))+c\log \left( {\dfrac{{g\left( x \right)}}{{f\left( x \right)}}} \right) + c
B) 12[log(g(x)f(x))]2+c\dfrac{1}{2}{\left[ {\log \left( {\dfrac{{g\left( x \right)}}{{f\left( x \right)}}} \right)} \right]^2} + c
C) (g)xf(x)log(g(x)f(x))+c\dfrac{{\left( g \right)x}}{{f\left( x \right)}}\log \left( {\dfrac{{g\left( x \right)}}{{f\left( x \right)}}} \right) + c
D) log[g(x)f(x)]g(x)f(x)+c\log \left[ {\dfrac{{g\left( x \right)}}{{f\left( x \right)}}} \right] - \dfrac{{g\left( x \right)}}{{f\left( x \right)}} + c

Explanation

Solution

To solve this problem of integral, first we will use the properties of logarithm and then we will use substitution method of integration, where we substitute any part of a given function as an variable in the given function.

Complete step-by-step answer:
Given: we have given the integral f(x)g(x)f(x)g(x)f(x)g(x)[log(g(x))log(f(x))]dx\smallint \dfrac{{f\left( x \right)g'\left( x \right) - f'\left( x \right)g\left( x \right)}}{{f\left( x \right)g\left( x \right)}}[\log \left( {g\left( x \right)} \right) - \log \left( {f\left( x \right)} \right)]dx and we have to find what it equals to.
So, at first let I{\text{I}} be equal to f(x)g(x)f(x)g(x)f(x)g(x)[log(g(x))log(f(x))]dx\smallint \dfrac{{f\left( x \right)g'\left( x \right) - f'\left( x \right)g\left( x \right)}}{{f\left( x \right)g\left( x \right)}}[\log \left( {g\left( x \right)} \right) - \log \left( {f\left( x \right)} \right)]dx
First we will take the log part and apply logarithm rules on it log(g(x))log(f(x))\log \left( {g\left( x \right)} \right) - \log \left( {f\left( x \right)} \right)
=log(g(x)f(x))= \log \left( {\dfrac{{g\left( x \right)}}{{f\left( x \right)}}} \right)
After putting the these values , we will get:
I=f(x)g(x)f(x)g(x)f(x)g(x)[logg(x)f(x)]dx (1){\text{I}} = \int {\dfrac{{f\left( x \right)g'\left( x \right) - f'\left( x \right)g\left( x \right)}}{{f\left( x \right)g\left( x \right)}}} \left[ {\log \dfrac{{g\left( x \right)}}{{f\left( x \right)}}} \right]dx{\text{ }} \to \left( 1 \right)
Now, let logg(x)f(x)=t\log \dfrac{{g\left( x \right)}}{{f\left( x \right)}} = t
Now, we will apply partial differentiation method on it then we will get:
1g(x)f(x)[f(x)g(x)g(x)f(x)(f(x))2]dx=dt\dfrac{1}{{\dfrac{{g\left( x \right)}}{{f\left( x \right)}}}}\left[ {\dfrac{{f\left( x \right)g'\left( x \right) - g\left( x \right)f'\left( x \right)}}{{{{\left( {f\left( x \right)} \right)}^2}}}} \right]dx = dt
Now, after simplifying this integral we will get:
f(x)g(x)g(x)f(x)(f(x))2dx=dt\dfrac{{f\left( x \right)g'\left( x \right) - g\left( x \right)f'\left( x \right)}}{{{{\left( {f\left( x \right)} \right)}^2}}}dx = dt
Now, after putting the values in equation (1) we will get:
I=tdt{\text{I}} = \int {tdt}
Now, integrate this term then we will get:
I=t22+c{\text{I}} = \dfrac{{{t^2}}}{2} + c
We know, that the value of t=logg(x)f(x)t = \log \dfrac{{g\left( x \right)}}{{f\left( x \right)}}
Now, substitute the value of tt in I=t22+c{\text{I}} = \dfrac{{{t^2}}}{2} + c
I=12log(g(x)f(x))2+c{\text{I}} = \dfrac{1}{2}\log {\left( {\dfrac{{g\left( x \right)}}{{f\left( x \right)}}} \right)^2} + c
So, the value of integral of given term is 12log(g(x)f(x))2+c\dfrac{1}{2}\log {\left( {\dfrac{{g\left( x \right)}}{{f\left( x \right)}}} \right)^2} + c.
Therefore, option B is the correct answer.

Note:
Never get confused during the use of property of log\log or logarithm rule. In this property:-
logx+logy=logxy\log x + \log y = \log xy and logxlogy=logxy\log x - \log y = \log \dfrac{x}{y}.