Question
Question: Integrate the following function: \[\int{\sin 4x.\cos 3xdx}\]...
Integrate the following function:
∫sin4x.cos3xdx
Solution
Hint: Firstly Multiply and divide with 2 in the numerator and denominator respectively then we will get numerator in terms of 2sinAcosB then split the numerator using trigonometric formula given by 2sinAcosB=sin(A+B)+sin(A−B) then obtain the integrals of each term using their respective formulas.
Complete step-by-step answer:
To find the ∫sin4x.cos3xdx
Multiply and divide with 2 in the numerator and denominator respectively then we will get,
=21∫2sin4x.cos3xdx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We know that 2sinAcosB=sin(A+B)+sin(A−B)
=21∫(sin7x+sinx)dx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
=21[7−cos7x−cosx]+c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
=−14cos7x−2cosx+c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
Note: The integral value of sinx is given by −cosx and the integral value of sinax is given by a−cosax. For this type of problems we should know the basic trigonometric formulas, identities etc and integrals of the basic trigonometric functions. The constant of integration “c” is used for indefinite integrals.