Solveeit Logo

Question

Question: Integrate the following function: \[\int{\sin 4x.\cos 3xdx}\]...

Integrate the following function:
sin4x.cos3xdx\int{\sin 4x.\cos 3xdx}

Explanation

Solution

Hint: Firstly Multiply and divide with 2 in the numerator and denominator respectively then we will get numerator in terms of 2sinAcosB2\sin A\cos B then split the numerator using trigonometric formula given by 2sinAcosB=sin(A+B)+sin(AB)2\sin A\cos B=\sin (A+B)+\sin (A-B) then obtain the integrals of each term using their respective formulas.

Complete step-by-step answer:
To find the sin4x.cos3xdx\int{\sin 4x.\cos 3xdx}
Multiply and divide with 2 in the numerator and denominator respectively then we will get,
=122sin4x.cos3xdx=\dfrac{1}{2}\int{2\sin 4x.\cos 3xdx}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We know that 2sinAcosB=sin(A+B)+sin(AB)2\sin A\cos B=\sin (A+B)+\sin (A-B)
=12(sin7x+sinx)dx=\dfrac{1}{2}\int{\left( \sin 7x+\sin x \right)dx}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
=12[cos7x7cosx]+c=\dfrac{1}{2}\left[ \dfrac{-\cos 7x}{7}-\cos x \right]+c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
=cos7x14cosx2+c=-\dfrac{\cos 7x}{14}-\dfrac{\cos x}{2}+c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
Note: The integral value of sinx\sin x is given by cosx-\cos x and the integral value of sinax\sin ax is given by cosaxa\dfrac{-\cos ax}{a}. For this type of problems we should know the basic trigonometric formulas, identities etc and integrals of the basic trigonometric functions. The constant of integration “c” is used for indefinite integrals.