Solveeit Logo

Question

Question: Integrate the following function \[\dfrac{1}{\sqrt{{{\sin }^{3}}x\sin \left( x+\alpha \right)}}\]...

Integrate the following function
1sin3xsin(x+α)\dfrac{1}{\sqrt{{{\sin }^{3}}x\sin \left( x+\alpha \right)}}

Explanation

Solution

First we will expand sin(x+α)\sin \left( x+\alpha \right) using the identity sin(A+B)=sinAcosB+cosAsinB.\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B. Then we will take sin x common and multiply it with sin3x.{{\sin }^{3}}x. Then we will use the conversion 1sinθ=cosecθ,cosθsinθ=cotθ\dfrac{1}{\sin \theta }=\operatorname{cosec}\theta ,\dfrac{\cos \theta }{\sin \theta }=\cot \theta to simplify the function. Now, we will assume cot x = k and differentiate both the sides to find dx in terms of dk. Finally, we will convert the integral in the form dxax+b\int{\dfrac{dx}{\sqrt{ax+b}}} whose solution is 1a×2ax+b.\dfrac{1}{a}\times 2\sqrt{ax+b}. Use the formula: dcotθdθ=cosec2θ.\dfrac{d\cot \theta }{d\theta }=-{{\operatorname{cosec}}^{2}}\theta .

Complete step-by-step solution:
Here, we have to find the value of the integral of the function given as 1sin3xsin(x+α).\dfrac{1}{\sqrt{{{\sin }^{3}}x\sin \left( x+\alpha \right)}}. Let us assume this integral as I. Therefore, we have,
I=1sin3xsin(x+α)dxI=\int{\dfrac{1}{\sqrt{{{\sin }^{3}}x\sin \left( x+\alpha \right)}}}dx
Applying the identity: sin(A+B)=sinAcosB+cosAsinB,\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B, we get,
I=1sin3x(sinxcosα+cosxsinα)dx\Rightarrow I=\int{\dfrac{1}{\sqrt{{{\sin }^{3}}x\left( \sin x\cos \alpha +\cos x\sin \alpha \right)}}}dx
I=1sin3x×sinx(1×cosα+cosxsinx×sinα)dx\Rightarrow I=\int{\dfrac{1}{\sqrt{{{\sin }^{3}}x\times \sin x\left( 1\times \cos \alpha +\dfrac{\cos x}{\sin x}\times \sin \alpha \right)}}}dx
I=1sin4x(cosα+cosxsinxsinα)dx\Rightarrow I=\int{\dfrac{1}{\sqrt{{{\sin }^{4}}x\left( \cos \alpha +\dfrac{\cos x}{\sin x}\sin \alpha \right)}}}dx
I=1sin2x(cosα+cosxsinxsinα)dx\Rightarrow I=\int{\dfrac{1}{{{\sin }^{2}}x\sqrt{\left( \cos \alpha +\dfrac{\cos x}{\sin x}\sin \alpha \right)}}}dx
Now, using the conversion 1sinθ=cosecθ,cosθsinθ=cotθ,\dfrac{1}{\sin \theta }=\operatorname{cosec}\theta ,\dfrac{\cos \theta }{\sin \theta }=\cot \theta , we get,
I=cosec2xcosα+cotxsinαdx\Rightarrow I=\int{\dfrac{{{\operatorname{cosec}}^{2}}x}{\sqrt{\cos \alpha +\cot x\sin \alpha }}dx}
Now, let us assume cot x = k, therefore differentiating both the sides, we get,
dcotxdx=dkdx\dfrac{d\cot x}{dx}=\dfrac{dk}{dx}
cosec2x=dkdx\Rightarrow -{{\operatorname{cosec}}^{2}}x=\dfrac{dk}{dx}
dk=cosec2xdx\Rightarrow dk=-{{\operatorname{cosec}}^{2}}xdx
cosec2xdx=dk\Rightarrow {{\operatorname{cosec}}^{2}}xdx=-dk
Substituting the above value in the numerator of the function inside the integral, we get,
I=dkcosα+ksinα\Rightarrow I=\int{\dfrac{-dk}{\sqrt{\cos \alpha +k\sin \alpha }}}
I=dkksinα+cosα......(i)\Rightarrow I=-\int{\dfrac{dk}{\sqrt{k\sin \alpha +\cos \alpha }}......\left( i \right)}
As we know that here sinα\sin \alpha and cosα\cos \alpha are constants, so the above integral is of the form dxax+b\int{\dfrac{dx}{\sqrt{ax+b}}} whose solution is 2aax+b,\dfrac{2}{a}\sqrt{ax+b}, where a is the coefficient of x. So, the value of the integral given by equation (i) will be
I=2sinαksinα+cosα+cI=\dfrac{-2}{\sin \alpha }\sqrt{k\sin \alpha +\cos \alpha }+c
where ‘c’ is the constant of the integration.
Substituting k = cot x, we get,
I=2sinαcotxsinα+cosα+c\Rightarrow I=\dfrac{-2}{\sin \alpha }\sqrt{\cot x\sin \alpha +\cos \alpha }+c
Hence, the above expression of I is our required answer.

Note: One may note that without using the expansion formula of sin (A + B) and the conversions of 1sinθ\dfrac{1}{\sin \theta } and cosθsinθ,\dfrac{\cos \theta }{\sin \theta }, we will not be able to solve the question. Also, note that we have taken sin x common from the expression (sinxcosα+cosxsinα)\left( \sin x\cos \alpha +\cos x\sin \alpha \right) and multiplied it with sin3x.{{\sin }^{3}}x. Here, we do not have to take cos x common as it will not give any simplified form. One must remember some basic integral formulas so that when the expression is simplified, its integral can be found easily.