Solveeit Logo

Question

Question: Integrate the following equation: \(\int {\dfrac{1}{{{x^3}\left( {{x^3} - 1} \right)}}dx} \). (a) ...

Integrate the following equation: 1x3(x31)dx\int {\dfrac{1}{{{x^3}\left( {{x^3} - 1} \right)}}dx} .
(a) 13log(x1)16log(x2+x+1)13tan1(2x+13)+c\dfrac{1}{3}\log \left( {x - 1} \right) - \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) - \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{2x + 1}}{{\sqrt 3 }}} \right) + c
(b) 13log(x1)16log(x2+x+1)13tan1(2x+13)+12x2+c\dfrac{1}{3}\log \left( {x - 1} \right) - \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) - \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{2x + 1}}{{\sqrt 3 }}} \right) + \dfrac{1}{{2{x^2}}} + c
(c) 13log(x1)+16log(x2+x+1)13tan1(2x+13)12x2+c - \dfrac{1}{3}\log \left( {x - 1} \right) + \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) - \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{2x + 1}}{{\sqrt 3 }}} \right) - \dfrac{1}{{2{x^2}}} + c
(d) None of these

Explanation

Solution

Hint : The given problem revolves around the concepts of integration. Keeping in mind, first of all making the numerator as where we can separate the denominator, say, x3(x31)=1{x^3} - \left( {{x^3} - 1} \right) = 1. Then, the first term will be in complex condition which can be solving again by separating the numerator and denominator respectively, (will be in dx(xa)(x2+x+b)=(Axa+Bx+C(x2+x+b))dx\int {\dfrac{{dx}}{{\left( {x - a} \right)\left( {{x^2} + x + b} \right)}} = } \int {\left( {\dfrac{A}{{x - a}} + \dfrac{{Bx + C}}{{\left( {{x^2} + x + b} \right)}}} \right)dx} mode). Hence, finding the constant(s) A,B and C puts it in the condition. As a result, obtained the remaining terms by using the formulae (or, rules) of the integration for the n terms such as 1xdx=logx+c\int {\dfrac{1}{x}dx} = \log x + c, and then substituting the values in the given expression, to obtained the desire solution.

Complete step-by-step answer :
Since, we have given the expression that
1x3(x31)dx\int {\dfrac{1}{{{x^3}\left( {{x^3} - 1} \right)}}dx}
Simplifying the expression mathematically that is x3(x31)=1{x^3} - \left( {{x^3} - 1} \right) = 1, we get
1x3(x31)dx=x3(x31)x3(x31)dx\int {\dfrac{1}{{{x^3}\left( {{x^3} - 1} \right)}}dx} = \int {\dfrac{{{x^3} - \left( {{x^3} - 1} \right)}}{{{x^3}\left( {{x^3} - 1} \right)}}dx}
Separating the numerator and denominator, we get
1x3(x31)dx=x3x3(x31)dxx31x3(x31)dx\int {\dfrac{1}{{{x^3}\left( {{x^3} - 1} \right)}}dx} = \int {\dfrac{{{x^3}}}{{{x^3}\left( {{x^3} - 1} \right)}}dx} - \int {\dfrac{{{x^3} - 1}}{{{x^3}\left( {{x^3} - 1} \right)}}dx}
1x3(x31)dx=1x31dx1x3dx\int {\dfrac{1}{{{x^3}\left( {{x^3} - 1} \right)}}dx} = \int {\dfrac{1}{{{x^3} - 1}}dx} - \int {\dfrac{1}{{{x^3}}}dx} … (i)
Now, let us find the integration by separating both the terms,
Therefore, let
I1=dxx31{I_1} = \int {\dfrac{{dx}}{{{x^3} - 1}}}
And,
I2=dxx3{I_2} = \int {\dfrac{{dx}}{{{x^3}}}} dx(xa)(x2+x+b)=(Axa+Bx+C(x2+x+b))dx\int {\dfrac{{dx}}{{\left( {x - a} \right)\left( {{x^2} + x + b} \right)}} = } \int {\left( {\dfrac{A}{{x - a}} + \dfrac{{Bx + C}}{{\left( {{x^2} + x + b} \right)}}} \right)dx}
Equation (i) becomes
1x3(x31)dx=I1I2\int {\dfrac{1}{{{x^3}\left( {{x^3} - 1} \right)}}dx} = {I_1} - {I_2} … (ii)
First of solving ‘I1{I_1}’, we get
I1=dxx31=dx(x1)(x2+x+1){I_1} = \int {\dfrac{{dx}}{{{x^3} - 1}}} = \int {\dfrac{{dx}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}}
\because We know that,
Integration for
The equation becomes,
I1=1(x1)(x2+x+1)dx=(Ax1+Bx+Cx2+x+1)dx{I_1} = \int {\dfrac{1}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}dx} = \int {\left( {\dfrac{A}{{x - 1}} + \dfrac{{Bx + C}}{{{x^2} + x + 1}}} \right)dx} … (iii)
Solving the equation mathematically, we get
1(x1)(x2+x+1)=Ax1+Bx+Cx2+x+1=A(x2+x+1)+(Bx+C)(x1)(x1)(x2+x+1)\dfrac{1}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \dfrac{A}{{x - 1}} + \dfrac{{Bx + C}}{{{x^2} + x + 1}} = \dfrac{{A\left( {{x^2} + x + 1} \right) + \left( {Bx + C} \right)\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}
Hence, equating the terms (or, equation), we get
1=A(x2+x+1)+(Bx+C)(x1)1 = A\left( {{x^2} + x + 1} \right) + \left( {Bx + C} \right)\left( {x - 1} \right)
1=Ax2+Ax+A+Bx2Bx+CxC1 = A{x^2} + Ax + A + B{x^2} - Bx + Cx - C
Comparing the equation i.e. in quadratic form, we get
(0)x2+(0)x+1=(A+B)x2+(AB+C)x+(AC)\left( 0 \right){x^2} + \left( 0 \right)x + 1 = \left( {A + B} \right){x^2} + \left( {A - B + C} \right)x + \left( {A - C} \right)
Equating the respective terms of certain quadratic equation i.e. of x2{x^2}, xx and constant{\text{constant}} respectively, we get
A+B=0A + B = 0 … (iv)
AB+C=0A - B + C = 0 … (v)
And, AC=1A - C = 1 … (vi)
As a result, solving these equations (iv), (v) and (vi) for the desire value, we get
Consider, equation (iv)
A+B=0A + B = 0
B=AB = - A … (vii)
Hence, substituting B=AB = - A in equation (v), we get
A+A+C=0A + A + C = 0
2A+C=02A + C = 0 … (viii)
Now,
\therefore Solving i.e. adding the equations (vi) and (viii), we get
3A=13A = 1
A=13A = \dfrac{1}{3}
Substitute A=13A = \dfrac{1}{3} in equation (vii) and (vi) respectively, we get
B=13B = - \dfrac{1}{3}
And,
131=C\dfrac{1}{3} - 1 = C
C=23C = \dfrac{{ - 2}}{3}
Now,
Hence, substituting all the values i.e. ‘A’, ‘B’ and ‘C’ equation (ii), we get
I1=1(x1)(x2+x+1)dx=(13x1+13x23x2+x+1)dx{I_1} = \int {\dfrac{1}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}dx} = \int {\left( {\dfrac{{\dfrac{1}{3}}}{{x - 1}} + \dfrac{{ - \dfrac{1}{3}x - \dfrac{2}{3}}}{{{x^2} + x + 1}}} \right)dx}
Solving the equation mathematically, we get
I1=[13(x1)13(x+2x2+x+1)]dx{I_1} = \int {\left[ {\dfrac{1}{{3\left( {x - 1} \right)}} - \dfrac{1}{3}\left( {\dfrac{{x + 2}}{{{x^2} + x + 1}}} \right)} \right]dx}
Separating the terms in the integration, we get
I1=13dxx113(x+2x2+x+1)dx{I_1} = \dfrac{1}{3}\int {\dfrac{{dx}}{{x - 1}}} - \dfrac{1}{3}\int {\left( {\dfrac{{x + 2}}{{{x^2} + x + 1}}} \right)dx}
For separating the integration (to solve the equation easily),
I1=IAIB{I_1} = {I_A} - {I_B} … (ix)
Where, IA=13dxx1{I_A} = \dfrac{1}{3}\int {\dfrac{{dx}}{{x - 1}}} … (x)
And,
IB=13(x+2x2+x+1)dx{I_B} = \dfrac{1}{3}\int {\left( {\dfrac{{x + 2}}{{{x^2} + x + 1}}} \right)dx} … (xi)
Considering the equation (x),
IA=13dxx1{I_A} = \dfrac{1}{3}\int {\dfrac{{dx}}{{x - 1}}}
Since, we know that
1xdx=logx+c\int {\dfrac{1}{x}dx} = \log x + c
f(x)f(x)dx=log[f(x)]+c\therefore \int {\dfrac{{f'\left( x \right)}}{{f\left( x \right)}}dx} = \log \left[ {f'\left( x \right)} \right] + c, we get
The equation (x) becomes,
IA=13log(x1)+c1{I_A} = \dfrac{1}{3}\log \left( {x - 1} \right) + {c_1} … (xii)
Where, c1,c2,c3,....cn{c_1},{c_2},{c_3},....{c_n} are integration constants respectively!
Now, considering the equation (xi),
IB=13(x+2x2+x+1)dx{I_B} = \dfrac{1}{3}\int {\left( {\dfrac{{x + 2}}{{{x^2} + x + 1}}} \right)dx}
Multiply and divide the equation by 22, we get
IB=16(2x+4x2+x+1)dx{I_B} = \dfrac{1}{6}\int {\left( {\dfrac{{2x + 4}}{{{x^2} + x + 1}}} \right)dx}
Term inside the integration i.e. 2x+42x + 4 can also be written as,
IB=16((2x+1)+3x2+x+1)dx{I_B} = \dfrac{1}{6}\int {\left( {\dfrac{{\left( {2x + 1} \right) + 3}}{{{x^2} + x + 1}}} \right)dx}
Separating the terms, we get
IB=16(2x+1x2+x+1)dx+361x2+x+1dx{I_B} = \dfrac{1}{6}\int {\left( {\dfrac{{2x + 1}}{{{x^2} + x + 1}}} \right)dx} + \dfrac{3}{6}\int {\dfrac{1}{{{x^2} + x + 1}}dx}
Now, hence it seems that in the first term, numerator is the exact derivative of the denominator i.e.
f(x2+x+1)=2x+1f'\left( {{x^2} + x + 1} \right) = 2x + 1
f(x)f(x)dx=log[f(x)]+c\therefore \int {\dfrac{{f'\left( x \right)}}{{f\left( x \right)}}dx} = \log \left[ {f'\left( x \right)} \right] + c, we get
IB=16log(x2+x+1)+c2+121x2+x+1dx{I_B} = \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) + {c_2} + \dfrac{1}{2}\int {\dfrac{1}{{{x^2} + x + 1}}dx}
And, since considering the second term i.e. the denominator x2+x+1{x^2} + x + 1 we can also write (x+12)2+(32)2{\left( {x + \dfrac{1}{2}} \right)^2} + {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2} which seems that (x+12)2+(34)2=x2+2x12+14+34=x2+x+1{\left( {x + \dfrac{1}{2}} \right)^2} + {\left( {\dfrac{{\sqrt 3 }}{4}} \right)^2} = {x^2} + 2x\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{3}{4} = {x^2} + x + 1, we get
Hence, the equation (xi) becomes
IB=16log(x2+x+1)+c1121(x+12)2+(32)2dx{I_B} = \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) + {c_1}\dfrac{1}{2}\int {\dfrac{1}{{{{\left( {x + \dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}}}dx}
Now, we know that
1x2+a2dx=1atan1(xa)+c\int {\dfrac{1}{{{x^2} + {a^2}}}dx} = \dfrac{1}{a}{\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right) + c
Hence, comparatively the equation becomes
IB=16log(x2+x+1)+c2+12×132tan1(x+1232)+c3{I_B} = \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) + {c_2} + \dfrac{1}{2} \times \dfrac{1}{{\dfrac{{\sqrt 3 }}{2}}}{\tan ^{ - 1}}\left( {\dfrac{{x + \dfrac{1}{2}}}{{\dfrac{{\sqrt 3 }}{2}}}} \right) + {c_3}
IB=16log(x2+x+1)+c2+12×23tan1(2x+1232)+c3{I_B} = \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) + {c_2} + \dfrac{1}{2} \times \dfrac{2}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{2x + 1}}{2}}}{{\dfrac{{\sqrt 3 }}{2}}}} \right) + {c_3}
As a result, solving the equation mathematically, we get
IB=16log(x2+x+1)+c1+13tan1(2x+13)+c2{I_B} = \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) + {c_1} + \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{2x + 1}}{{\sqrt 3 }}} \right) + {c_2} … (xiii)
From (xii) and (xiii),
Equation (ix) becomes,
I1=13log(x1)+c116log(x2+x+1)+c213tan1(2x+13)+c3{I_1} = \dfrac{1}{3}\log \left( {x - 1} \right) + {c_1} - \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) + {c_2} - \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{2x + 1}}{{\sqrt 3 }}} \right) + {c_3} … (xiv)
Similarly,
Solving ‘I2{I_2}’ i.e. I2=dxx3{I_2} = \int {\dfrac{{dx}}{{{x^3}}}} , we get
I2=dxx3=x3dx{I_2} = \int {\dfrac{{dx}}{{{x^3}}}} = \int {{x^{ - 3}}dx}
Since, we know that
xndx=xnxn+1+c\int {{x^n}dx} = \dfrac{{{x^n}}}{{{x^{n + 1}}}} + c where, c1,c2,c3,....cn{c_1},{c_2},{c_3},....{c_n} are integration constants respectively!
Hence, the equation becomes
I2=x3+13+1dx{I_2} = \int {\dfrac{{{x^{ - 3 + 1}}}}{{ - 3 + 1}}dx}
I2=x22dx{I_2} = \int {\dfrac{{{x^{ - 2}}}}{{ - 2}}dx}
Mathematically solving the equation, we get
I2=121x2dx{I_2} = - \dfrac{1}{2}\int {\dfrac{1}{{{x^2}}}dx}
I2=12x2+c4{I_2} = - \dfrac{1}{{2{x^2}}} + {c_4} … (xv)
As a result, from (xiv) and (xv)
Equation (i) becomes, we get
1x3(x31)dx=13log(x1)+c116log(x2+x+1)+c213tan1(2x+13)+c3(12x2+c4)\int {\dfrac{1}{{{x^3}\left( {{x^3} - 1} \right)}}dx} = \dfrac{1}{3}\log \left( {x - 1} \right) + {c_1} - \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) + {c_2} - \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{2x + 1}}{{\sqrt 3 }}} \right) + {c_3} - \left( { - \dfrac{1}{{2{x^2}}} + {c_4}} \right) 1x3(x31)dx=13log(x1)+c116log(x2+x+1)+c213tan1(2x+13)+c3+12x2c4\int {\dfrac{1}{{{x^3}\left( {{x^3} - 1} \right)}}dx} = \dfrac{1}{3}\log \left( {x - 1} \right) + {c_1} - \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) + {c_2} - \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{2x + 1}}{{\sqrt 3 }}} \right) + {c_3} + \dfrac{1}{{2{x^2}}} - {c_4}
Since, assuming c=c1,c2,c3,.....c = {c_1},{c_2},{c_3},..... as a constants of all the integration, we get
1x3(x31)dx=13log(x1)16log(x2+x+1)13tan1(2x+13)+12x2+c\int {\dfrac{1}{{{x^3}\left( {{x^3} - 1} \right)}}dx} = \dfrac{1}{3}\log \left( {x - 1} \right) - \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) - \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{2x + 1}}{{\sqrt 3 }}} \right) + \dfrac{1}{{2{x^2}}} + c
\therefore \Rightarrow Option (b) is correct.
So, the correct answer is “Option b”.

Note : One must remember the concept of integration and its simultaneous formulae. As a result, to get the desired outcome, remember the condition i.e. dx(xa)(x2+x+b)=(Axa+Bx+C(x2+x+b))dx\int {\dfrac{{dx}}{{\left( {x - a} \right)\left( {{x^2} + x + b} \right)}} = } \int {\left( {\dfrac{A}{{x - a}} + \dfrac{{Bx + C}}{{\left( {{x^2} + x + b} \right)}}} \right)dx} in this case particular. Algebraically solving the equations/solution use (or, substitute) the formulae like 1x2+a2dx=1atan1(xa)+c\int {\dfrac{1}{{{x^2} + {a^2}}}dx} = \dfrac{1}{a}{\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right) + c, 1xdx=logx+c\int {\dfrac{1}{x}dx} = \log x + c, f(x)f(x)dx=log[f(x)]+c\int {\dfrac{{f'\left( x \right)}}{{f\left( x \right)}}dx} = \log \left[ {f'\left( x \right)} \right] + c, etc., so as to be sure of our final answer.