Solveeit Logo

Question

Question: Integrate: \(\sqrt{\dfrac{2-x}{x}}\) \(\left(0< x<2\right)\)....

Integrate: 2xx\sqrt{\dfrac{2-x}{x}} (0<x<2)\left(0< x<2\right).

Explanation

Solution

For this problem we will first take the substitution as u=xu=\sqrt{x} and calculate the value of dudu by differentiating uu with respect to xx. After finding the value of dudu, we will substitute the values we have in the integration of the given equation. After substituting the values and simplifying the obtained equation we can use the formula a2x2dx=x2a2x2+a22sin1xa+C\int{\sqrt{{{a}^{2}}-{{x}^{2}}}dx}=\dfrac{x}{2}\sqrt{{{a}^{2}}-{{x}^{2}}}+\dfrac{{{a}^{2}}}{2}{{\sin }^{-1}}\dfrac{x}{a}+C to get the result which is in terms of uu. To get the answer in terms of xx we will again substitute the value of uu which is u=xu=\sqrt{x} in the integration value.

Complete step-by-step answer:
Given that, 2xx\sqrt{\dfrac{2-x}{x}}
Integrating the given equation with respect to xx, then we have 2xxdx\int{\sqrt{\dfrac{2-x}{x}}}dx
Let us taking the substitution u=xu=\sqrt{x} u2=x\Rightarrow {{u}^{2}}=x
Differentiating the value of uu with respect to xx, then we will get
dudx=ddx(x)\dfrac{du}{dx}=\dfrac{d}{dx}\left( \sqrt{x} \right)
We can write square root of any function as the 12\dfrac{1}{2} power of that function, then
dudx=ddx(x12)\dfrac{du}{dx}=\dfrac{d}{dx}\left( {{x}^{\dfrac{1}{2}}} \right)
We have the differentiation value of xn{{x}^{n}} as ddx(xn)=nxn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}
dudx=ddx(x12)=12x121 dudx=12x122 dudx=12x12 \begin{aligned} & \therefore \dfrac{du}{dx}=\dfrac{d}{dx}\left( {{x}^{\dfrac{1}{2}}} \right)=\dfrac{1}{2}{{x}^{\dfrac{1}{2}-1}} \\\ & \Rightarrow \dfrac{du}{dx}=\dfrac{1}{2}{{x}^{\dfrac{1-2}{2}}} \\\ & \Rightarrow \dfrac{du}{dx}=\dfrac{1}{2}{{x}^{\dfrac{-1}{2}}} \\\ \end{aligned}
We know that am=1am{{a}^{-m}}=\dfrac{1}{{{a}^{m}}}, then we will get
dudx=121x12 dudx=12x \begin{aligned} & \dfrac{du}{dx}=\dfrac{1}{2}\dfrac{1}{{{x}^{\dfrac{1}{2}}}} \\\ & \Rightarrow \dfrac{du}{dx}=\dfrac{1}{2\sqrt{x}} \\\ \end{aligned}
From the value of dudx\dfrac{du}{dx} we can write dxx=2du\dfrac{dx}{\sqrt{x}}=2du
We have values dxx=2du\dfrac{dx}{\sqrt{x}}=2du, u=xu=\sqrt{x} and u2=x{{u}^{2}}=x. Substituting all those values in the integration, then we will get
2xxdx=2xxdx 2xxdx=22u2du 2xxdx=22u2du \begin{aligned} & \int{\sqrt{\dfrac{2-x}{x}}}dx=\int{\dfrac{\sqrt{2-x}}{\sqrt{x}}dx} \\\ & \Rightarrow \int{\sqrt{\dfrac{2-x}{x}}}dx=\int{2\sqrt{2-{{u}^{2}}}}du \\\ & \Rightarrow \int{\sqrt{\dfrac{2-x}{x}}}dx=2\int{\sqrt{2-{{u}^{2}}}}du \\\ \end{aligned}
Now we have the formula a2x2dx=x2a2x2+a22sin1xa+C\int{\sqrt{{{a}^{2}}-{{x}^{2}}}dx}=\dfrac{x}{2}\sqrt{{{a}^{2}}-{{x}^{2}}}+\dfrac{{{a}^{2}}}{2}{{\sin }^{-1}}\dfrac{x}{a}+C, then
(2)2u2du=u22u2+(2)22sin1u2+C\int{\sqrt{{{\left( \sqrt{2} \right)}^{2}}-{{u}^{2}}}}du=\dfrac{u}{2}\sqrt{2-{{u}^{2}}}+\dfrac{{{\left( \sqrt{2} \right)}^{2}}}{2}{{\sin }^{-1}}\dfrac{u}{\sqrt{2}}+C
Substituting the value of u=xu=\sqrt{x} in the above equation, then we will get
2xxdx=x22(x)2+22sin1x2+C 2xxdx=x22x+sin1(x2)+C \begin{aligned} & \int{\sqrt{\dfrac{2-x}{x}}}dx=\dfrac{\sqrt{x}}{2}\sqrt{2-{{\left( \sqrt{x} \right)}^{2}}}+\dfrac{2}{2}{{\sin }^{-1}}\dfrac{\sqrt{x}}{\sqrt{2}}+C \\\ & \Rightarrow \int{\sqrt{\dfrac{2-x}{x}}}dx=\dfrac{\sqrt{x}}{2}\sqrt{2-x}+{{\sin }^{-1}}\left( \sqrt{\dfrac{x}{2}} \right)+C \\\ \end{aligned}

Note: We can solve this problem not only by substituting u=xu=\sqrt{x} but also, we can solve this problem by taking the substitution u=x2xu=\dfrac{\sqrt{x}}{\sqrt{2-x}}. If the take the substitution u=x2xu=\dfrac{\sqrt{x}}{\sqrt{2-x}} you need to work hard to get the value of dudx\dfrac{du}{dx} and we will get the integration value in terms of tan1{{\tan }^{-1}} function.