Solveeit Logo

Question

Question: Integrate sin3x.cos4x...

Integrate sin3x.cos4x

Explanation

Solution

Hint- To integrate some mathematical functions like sin3x.cos4x , we first need to change the multiplication sign between them using the trigonometric formula of sina.cosb=12(sin(a+b)+sin(ab))\sin a.\cos b = \dfrac{1}{2}\left( {\sin \left( {a + b} \right) + \sin \left( {a - b} \right)} \right) and then integrate them separately using integration formulas and put a constant at the end to get the required solution.

Complete step by step answer:

We know that
Sin(a+b) = sina.cosb + cosa.sinb
Sin(a-b) = sina.cosb - cosa.sinb
On adding both the equations , we get
Sin(a+b) + sin(a-b)= 2sina.cosb
sina.cosb=12(sin(a+b)+sin(ab))\Rightarrow \sin a.\cos b = \dfrac{1}{2}\left( {\sin \left( {a + b} \right) + \sin \left( {a - b} \right)} \right)
Therefore ,
sin3x.cos4x = 12(sin(3x+4x)+sin(3x4x))\dfrac{1}{2}\left( {\sin \left( {3x + 4x} \right) + \sin \left( {3x - 4x} \right)} \right)
sin3x.cos4x=12(sin7xsinx) (since sin(θ)=sinθ) \Rightarrow sin3x.cos4x = \dfrac{1}{2}\left( {\sin 7x - \sin x} \right){\text{ }}\left( {{\text{since sin}}\left( { - \theta } \right) = - \sin \theta } \right){\text{ }}
Now integrating the above ,
(sin3x.cos4x)dx=12[sin7xdxsinxdx]\int {\left( {\sin 3x.cos4x} \right)dx} = \dfrac{1}{2}\left[ {\int {\sin 7xdx} - \int {\sin xdx} } \right]
(sin3x.cos4x)dx=12[cos7x7+cosx]+C (since sin(ax+b)dx=cos(ax+b)a )\Rightarrow \int {\left( {\sin 3x.cos4x} \right)dx} = \dfrac{1}{2}\left[ { - \dfrac{{\cos 7x}}{7} + \cos x} \right] + C{\text{ }}\left( {\operatorname{si} {\text{nce }}\int {\sin \left( {ax + b} \right)dx = - \dfrac{{\cos \left( {ax + b} \right)}}{a}} {\text{ }}} \right)
(sin3x.cos4x)dx=114cos7x+12cosx+C\Rightarrow \int {\left( {\sin 3x.cos4x} \right)dx} = \dfrac{{ - 1}}{{14}}\cos 7x + \dfrac{1}{2}\cos x + C

Note - In order to include all antiderivatives of f(x) the constant of integration C is used for indefinite integrals. The importance of C is that it allows us to express the general form of antiderivatives.