Solveeit Logo

Question

Question: integrate sin^-1 x / sqrt (1-x^2)...

integrate sin^-1 x / sqrt (1-x^2)

Answer

(sin1x)22+C\frac{(\sin^{-1} x)^2}{2} + C

Explanation

Solution

To integrate the given function, we use the method of substitution.

Let u=sin1xu = \sin^{-1} x.

Differentiating uu with respect to xx, we get:

dudx=11x2\frac{du}{dx} = \frac{1}{\sqrt{1-x^2}}

This implies:

du=11x2dxdu = \frac{1}{\sqrt{1-x^2}} dx

Now, substitute uu and dudu into the integral:

sin1x1x2dx=udu\int \frac{\sin^{-1} x}{\sqrt{1-x^2}} dx = \int u \, du

This is a standard integral:

udu=u22+C\int u \, du = \frac{u^2}{2} + C

Finally, substitute back u=sin1xu = \sin^{-1} x:

(sin1x)22+C\frac{(\sin^{-1} x)^2}{2} + C