Solveeit Logo

Question

Question: Integrate \({{\sec }^{3}}x\) with respect to x....

Integrate sec3x{{\sec }^{3}}x with respect to x.

Explanation

Solution

Hint: We will be using the concept of integral calculus to solve the problem. We will be using the integration by parts method to integrate sec3x{{\sec }^{3}}x.

Complete step-by-step answer:
Now, we have been given sec3xdx\int{{{\sec }^{3}}xdx} and we have to find its value.
Now, we will be using integration by parts to solve the problem. We know that,
f(x)g(x)dx=f(x)g(x)dx(f(x)g(x)dx)dx\int{f\left( x \right)g\left( x \right)dx}=f\left( x \right)\int{g\left( x \right)dx}-\int{\left( f'\left( x \right)\int{g\left( x \right)dx} \right)dx}
So, we split sec3xdx\int{{{\sec }^{3}}xdx} as,
I=sec2xsecxdxI=\int{{{\sec }^{2}}x}\sec xdx
So, using integral by parts we have,

& I=\sec x\int{{{\sec }^{2}}xdx-\int{\sec x\tan x\int{{{\sec }^{2}}xdx}}} \\\ & I=\sec x\int{{{\sec }^{2}}xdx-\int{\left( \sec x\tan x\int{{{\sec }^{2}}xdx} \right)}}dx..........\left( 1 \right) \\\ \end{aligned}$$ Now, we have to find $\int{{{\sec }^{3}}xdx}$. Now, we know that $\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x$ and we know that differentiation and integration are reverse processes. So, we can find $\int{{{\sec }^{2}}xdx}$ by finding the anti – derivative of ${{\sec }^{2}}x$ which is tan x. Therefore, $\int{{{\sec }^{2}}x}dx=\tan x$ Now, we have from (1), $I=\sec x\tan x-\int{\sec x{{\tan }^{2}}xdx}$ Now, we know that ${{\sec }^{2}}x-{{\tan }^{2}}x=1$ ${{\tan }^{2}}x={{\sec }^{2}}x-1$ Therefore, we have, $\begin{aligned} & I=\sec x\tan x-\int{\sec x\left( {{\sec }^{2}}x-1 \right)dx} \\\ & I=\sec x\tan x-\int{\left( {{\sec }^{3}}x-\sec x \right)dx} \\\ & I=\sec x\tan x-\int{{{\sec }^{3}}xdx+\int{\sec xdx}} \\\ \end{aligned}$ Now, we have taken $I=\int{{{\sec }^{3}}xdx}$. So, substituting this we have, $\begin{aligned} & I=\sec x\tan x-I+\int{\sec xdx} \\\ & 2I=\sec x\tan x+\int{\sec xdx} \\\ \end{aligned}$ Now, we know that, $\int{\sec xdx=\log \left| \sec x+\tan x \right|+c}$ Therefore, we have, $\begin{aligned} & 2I=\sec x\tan x+\log \left| \sec x+\tan x \right|+c \\\ & I=\dfrac{1}{2}\left( \sec x\tan x \right)+\dfrac{1}{2}\log \left| \sec x+\tan x \right|+c \\\ \end{aligned}$ Note: To solve these types of questions it is important to note that we have re-substituted $\int{{{\sec }^{3}}xdx=I}$ in our solution to further simplify it. Also it is advisable to remember standard integral like, $\begin{aligned} & \int{{{\sec }^{2}}xdx=\tan x+c} \\\ & \int{\sec xdx=\log \left| \sec x+\tan x \right|+c} \\\ \end{aligned}$