Solveeit Logo

Question

Question: Integrate \(\log (\sin x)\) from \(0\) to \(\dfrac{\pi }{2}\)....

Integrate log(sinx)\log (\sin x) from 00 to π2\dfrac{\pi }{2}.

Explanation

Solution

To solve the given definite integral, we will use some properties of definite integral along with some other properties of logarithm and properties of integration. The properties of definite integral used while computing the definite integral are:
0af(x)dx=0af(ax)dx\int\limits_0^a {f(x)dx = \int\limits_0^a {f(a - x)} } dx,
02af(x)dx=20af(x)dx, if f(2ax)=f(x)\int\limits_0^{2a} {f(x)dx = 2\int\limits_0^a {f(x)dx,{\text{ if }}f(2a - x) = f(x)} }
abf(x)dx=abf(t)dt\int\limits_a^b {f(x)} dx = \int\limits_a^b {f(t)dt}
These properties are used in solving the integration in the same order along with other properties and methods of solving integration.

Complete step by step answer:
Let us assume the given definite integral as,
I1=0π2log(sinx)dx(1){I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log (\sin x)dx} - - - - (1)
Now, using the definite integral property, 0af(x)dx=0af(ax)dx\int\limits_0^a {f(x)dx = \int\limits_0^a {f(a - x)} } dx, we get,
I1=0π2log[sin(π2x)]dx\Rightarrow {I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \left[ {\sin \left( {\dfrac{\pi }{2} - x} \right)} \right]dx}
Now, we know the trigonometric formula sin(π2x)=cosx\sin \left( {\dfrac{\pi }{2} - x} \right) = \cos x. So, we get,
I1=0π2logcosxdx(2)\Rightarrow {I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} - - - - \left( 2 \right)
Now, adding equations (1)(1) and (2)(2), we get,
I1+I1=0π2log(sinx)dx+0π2log(cosx)dx\Rightarrow {I_1} + {I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log (\sin x)dx} + \int\limits_0^{\dfrac{\pi }{2}} {\log (\cos x)dx}
Now, we know the property of logarithm loga+logb=log(ab)\log a + \log b = \log \left( {ab} \right). So, using this property in the expression, we have,
2I1=0π2log(sinx×cosx)dx\Rightarrow 2{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log (\sin x \times \cos x)dx}

Now, multiplying and dividing 22 withsinxcosx\sin x\cos x,
2I1=0π2log[2sinxcosx2]dx\Rightarrow 2{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log \left[ {\dfrac{{2\sin x\cos x}}{2}} \right]dx}
Using the property of logarithm logalogb=log(ab)\log a - \log b = \log \left( {\dfrac{a}{b}} \right),
2I1=0π2[log(2sinxcosx)log2]dx\Rightarrow 2{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log (2\sin x\cos x) - \log 2} \right]dx}
Now, we know the trigonometric double angle formula for sine as sin2x=2sinxcosx\sin 2x = 2\sin x\cos x.
2I1=0π2[log(sin2x)log2]dx\Rightarrow 2{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\left[ {\log (\sin 2x) - \log 2} \right]dx}
Separating both the integrals, we get,
2I1=0π2log(sin2x)dx0π2log2dx(3)\Rightarrow 2{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log (\sin 2x)dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx} - - - - (3)
Let, I2=0π2log(sin2x)dx{I_2} = \int\limits_0^{\dfrac{\pi }{2}} {\log (\sin 2x)dx}
Now, let 2x=t2x = t.
Differentiating both sides with respect to x, we get,
2=dtdx\Rightarrow 2 = \dfrac{{dt}}{{dx}}
dx=dt2\Rightarrow dx = \dfrac{{dt}}{2}

Now, for adjusting the lower limit and upper limit of the integral, we have,

xxt=2xt = 2x
002(0)=02(0) = 0
π2\dfrac{\pi }{2}2(π2)=π2\left( {\dfrac{\pi }{2}} \right) = \pi

Therefore, putting the values of t and dt. Also, changing the limits, we get,
I2=0π2log(sin2x)dx{I_2} = \int\limits_0^{\dfrac{\pi }{2}} {\log (\sin 2x)dx}
I2=0πlog(sint)dt2\Rightarrow {I_2} = \int\limits_0^\pi {\log (\sin t)\dfrac{{dt}}{2}}
I2=120πlog(sint)dt\Rightarrow {I_2} = \dfrac{1}{2}\int\limits_0^\pi {\log (\sin t)dt}
Now, using the property, 02af(x)dx=20af(x)dx, if f(2ax)=f(x)\int\limits_0^{2a} {f(x)dx = 2\int\limits_0^a {f(x)dx,{\text{ if }}f(2a - x) = f(x)} } ,
Here, let f(t)=logsintf(t) = \log \sin t.
Then, f(2at)=f(2πt)=log[sin(2πt)]=log(sint)f(2a - t) = f(2\pi - t) = \log [\sin (2\pi - t)] = \log (\sin t)
We get, f(t)=f(2at)f(t) = f(2a - t)
I2=120πlog(sint)dt\Rightarrow {I_2} = \dfrac{1}{2}\int\limits_0^\pi {\log (\sin t)dt}
I2=12×20π2log(sint)dt\Rightarrow {I_2} = \dfrac{1}{2} \times 2\int\limits_0^{\dfrac{\pi }{2}} {\log (\sin t)dt}
I2=0π2log(sint)dt\Rightarrow {I_2} = \int\limits_0^{\dfrac{\pi }{2}} {\log (\sin t)dt}
Now, using the property, abf(x)dx=abf(t)dt\int\limits_a^b {f(x)} dx = \int\limits_a^b {f(t)dt} , we get,
I2=0π2log(sinx)dx{I_2} = \int\limits_0^{\dfrac{\pi }{2}} {\log (\sin x)dx}
Putting, the values of I2{I_2}in equation (3)(3), we get,
2I1=0π2log(sin2x)dx0π2log2dx2{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log (\sin 2x)dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx}
2I1=0π2log(sinx)dx0π2log2dx\Rightarrow 2{I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log (\sin x)dx} - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx}
Now, we can see that I2=I1=0π2log(sinx)dx{I_2} = {I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\log (\sin x)dx}
Therefore, we can write,
2I1=I10π2log2dx\Rightarrow 2{I_1} = {I_1} - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx}
Now, subtracting I1{I_1}from both sides, we get,
I1=0π2log2dx\Rightarrow {I_1} = - \int\limits_0^{\dfrac{\pi }{2}} {\log 2dx}
Taking constant term outside of the integral, we get,
I1=log20π2dx\Rightarrow {I_1} = - \log 2\int\limits_0^{\dfrac{\pi }{2}} {dx}
Now, we know that the derivative of 11 with respect to x is x. So, putting in the limits of the integral, we get,
I1=log2[π20]\Rightarrow {I_1} = - \log 2\left[ {\dfrac{\pi }{2} - 0} \right]
I1=log2[π2]\Rightarrow {I_1} = - \log 2\left[ {\dfrac{\pi }{2}} \right]
I1=π2log2\Rightarrow {I_1} = - \dfrac{\pi }{2}\log 2
0π2log(sinx)dx=π2log2\therefore \int\limits_0^{\dfrac{\pi }{2}} {\log (\sin x)dx} = - \dfrac{\pi }{2}\log 2
Note: The given problem requires thorough knowledge of the properties involving definite integrals. One should not forget to change the limits of integral while changing the variable in the integration. We should remember the integrals of some basic functions in order to tackle such questions. We must take care of the calculations while solving the problem.