Solveeit Logo

Question

Question: Integrate \[\log (\sin x + \cos x)dx\] from \[\dfrac{{ - \pi}}{4}\] to \[\dfrac{{\pi}}{4}\]....

Integrate log(sinx+cosx)dx\log (\sin x + \cos x)dx from π4\dfrac{{ - \pi}}{4} to π4\dfrac{{\pi}}{4}.

Explanation

Solution

In order to determine the integral of the given logarithmic function, log(sinx+cosx)dx\log (\sin x + \cos x)dx. First, we have to compare the given function with the formula, baf(x)dx=oa[f(x)+f(x)]dx\int\limits_b^a {f(x)dx = \int\limits_o^a {[f(x) + f( - x)]dx} } is continuous in interval[a,a]\left[ { - a,a} \right], the process of finding integrals is called integration.
and also, the logarithmic formula is (loga+logb=logab)(\log a + \log b = \log ab)used to get the required solution.

Complete step-by-step answer:
We are given integrate the equationlog(sinx+cosx)dx\log (\sin x + \cos x)dx with the interval from π4 - \dfrac{\pi }{4} to π4\dfrac{\pi }{4}.
Now, consider, I=π4π4log(sinx+cosx)dx{\rm I} = \int\limits_{\dfrac{{ - \pi }}{4}}^{\dfrac{\pi }{4}} {\log (\sin x + \cos x)dx} ----------(1)
Let the functionf(x)f(x) is continuous in interval [-a,a], then
baf(x)dx=oa[f(x)+f(x)]dx\int\limits_b^a {f(x)dx = \int\limits_o^a {[f(x) + f( - x)]dx} }
I=0π4[log(sin(x)+cos(x))+log(sin(x)+cos(x))]dx{\rm I} = \int\limits_0^{\dfrac{\pi }{4}} {\left[ {\log (\sin (x) + \cos (x)) + \log (\sin ( - x) + \cos ( - x))} \right]dx}
Expanding the bracket on RHS, since cos(x)=cosx\cos ( - x) = \cos xbut, sin(x)=sinx\sin ( - x) = - \sin x
I=0π4[log(sinx+cosx)+log(cosxsinx)]dx{\rm I} = \int\limits_0^{\dfrac{\pi }{4}} {\left[ {\log (\sin x + \cos x) + \log (\cos x - \sin x)} \right]dx}
Accordingly, we get the logarithmic formula is (loga+logb=logab)(\log a + \log b = \log ab)
I=0π4[log(sinx+cosx)(cosxsinx)]dx{\rm I} = \int\limits_0^{\dfrac{\pi }{4}} {\left[ {\log (\sin x + \cos x)(\cos x - \sin x)} \right]dx}
We can write this as follows
I=0π4log(cos2xsin2x)dx{\rm I} = \int\limits_0^{\dfrac{\pi }{4}} {\log ({{\cos }^2}x - {{\sin }^2}x)dx}
I=0π4log(cos2x)dx{\rm I} = \int\limits_0^{\dfrac{\pi }{4}} {\log (\cos 2x)dx} --------(2)
Now, let us consider 2x = t$$$$ \Rightarrow dx = \dfrac{{dt}}{2}
When x=0x = 0then t=0t = 0
When x=π4x = \dfrac{\pi }{4} then t=2(π4)t=π2t = 2\left( {\dfrac{\pi }{4}} \right) \Rightarrow t = \dfrac{\pi }{2}
Now, we can substitute all the values in the equation (2), then
I=0tlog(cost)dx\Rightarrow {\rm I} = \int\limits_0^t {\log (\cos t)dx}
I=0π2log(cost)(dt2)\Rightarrow {\rm I} = \int\limits_0^{\dfrac{\pi }{2}} {\log (\cos t)\left( {\dfrac{{dt}}{2}} \right)}
I=120π2log(cost)dt\Rightarrow {\rm I} = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {\log (\cos t)dt} --------- (3)
By symmetry we have thelog(sinx)dx=I=log(cosx)dx\log (\sin x)dx = {\rm I} = \log (\cos x)dx on the interval of [0,π2]\left[ {0,\dfrac{\pi }{2}} \right]. So this is true for any even or odd function on this interval. 0π2log(cosx)dx=I=0π2log(sinx)dx\int\limits_0^{\dfrac{\pi }{2}} {\log (\cos x)dx = {\rm I}} = \int\limits_0^{\dfrac{\pi }{2}} {\log (\sin x)dx} , as is an exercise from Demidovich problem in analysis. then
I=120π2log(sint)dt\Rightarrow {\rm I} = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {\log (\sin t)dt} --------- (4)
Here, adding the equation (3) and (4), we can get
I+I=120π2log(sint+cost)dt\Rightarrow {\rm I} + {\rm I} = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {\log (\sin t + \cos t)dt}
since, (log(a+b)=logab)(\log (a + b) = \log ab)
2I=120π2log(sintcost)dt\Rightarrow 2{\rm I} = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {\log (\sin t\cos t)dt}
2I=120π2logsin2t2dt\Rightarrow 2{\rm I} = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {\log \dfrac{{\sin 2t}}{2}dt}
Now, we can substitute back ‘t’ value, we can get
2I=120π2(log(sin2x)log2)dx\Rightarrow 2{\rm I} = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {(\log (\sin 2x) - \log 2)dx}
From the equation (4) I=120π2log(sint)dt\Rightarrow {\rm I} = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {\log (\sin t)dt} where, t=2xt = 2x, we can get
2I=I(12)π2log2\Rightarrow 2{\rm I} = {\rm I} - \left( {\dfrac{1}{2}} \right)\dfrac{\pi }{2}\log 2
By subtracting ‘I{\rm I}’ on both sides of the equation, now

2II=π4log2 I=π4log2  \Rightarrow 2{\rm I} - {\rm I} = - \dfrac{\pi }{4}\log 2 \\\ \Rightarrow {\rm I} = - \dfrac{\pi }{4}\log 2 \\\

Therefore, I=π4loge2{\rm I} = - \dfrac{\pi }{4}\log {e^2}
Hence, Integratelog(sinx+cosx)dx\log (\sin x + \cos x)dxfromπ4\dfrac{{ - \pi}}{4}toπ4\dfrac{{\pi}}{4} is I=π4loge2{\rm I} = - \dfrac{\pi }{4}\log {e^2}

Note: we note that an exercise from Demidovich problem in analysis we have to remind is0π2log(cosx)dx=I=0π2log(sinx)dx\int\limits_0^{\dfrac{\pi }{2}} {\log (\cos x)dx = {\rm I}} = \int\limits_0^{\dfrac{\pi }{2}} {\log (\sin x)dx} .
In integral, there are two types of integrals in maths are definite integral and Indefinite integral
Definite Integral: An integral that contains the upper and lower limits then it is a definite integral. On a real line, x is restricted to lie. Riemann Integral is the other name of the Definite Integral.A definite Integral is represented as: abf(x)dx\int\limits_a^b {f(x)dx}
Indefinite Integral : Indefinite integrals are defined without upper and lower limits. It is represented as: f(x)dx=F(x)+C\smallint f(x)dx = F(x) + C. Where C is any constant and the function f(x)f\left( x \right)is called the integrand.