Question
Question: Integrate \(\ln \left( {2x} \right)\)....
Integrate ln(2x).
Solution
Indefinite integral simply represents the area under a given curve without any boundary conditions. So here by using this basic definition we can integrate ln(2x).Also we know integration by parts: ∫udv=uv−∫vdu.The above expression can also be used to integrateln(2x).
Complete step by step answer:
Given, ln(2x)..............................(i)
Also by the basic definition of indefinite integral we can write that:
Indefinite integral is given by: ∫f(x)dx
Such to integrate ln(2x)we can write
∫ln(2x)dx..........................(ii)
Now on observing (i) we can say that the term ln(2x)cannot be integrated directly such that we have to use integration by parts, which is:
∫udv=uv−∫vdu..................(iii)
Now here we need to findu,du,vanddv.
So from the given question we can write:
u=ln(2x)anddv=dx..................(iv)
So we can find vanddufrom the given conditions in (iii):
u = \ln (2x)\;{\text{and}}\;dv = dx \\\
\Rightarrow du = \dfrac{2}{{2x}} = \dfrac{1}{x}...............\left( v \right) \\\
{\text{and}} \\\
\Rightarrow v = x.......................\left( {vi} \right) \\\
Now substituting (iv), (v) and (vi) in (iii), we get:
\int {\ln \left( {2x} \right)dx = x\ln \left( {2x} \right) - \int {dx} } \\
\Rightarrow\int {\ln \left( {2x} \right)dx = x\ln \left( {2x} \right) - x} \\
\therefore\int {\ln \left( {2x} \right)dx = x\left( {\ln \left( {2x} \right) - 1} \right)} + C...........................\left( {viii} \right) \\