Solveeit Logo

Question

Question: Integrate \(\int_{}^{}{\sin^{8}xdx}\)...

Integrate sin8xdx\int_{}^{}{\sin^{8}xdx}

A

127[sin8x88sin6x6+28sin4x456sin2x2+35x+c]\frac{1}{2^{7}}\left\lbrack \frac{\sin 8x}{8} - 8\frac{\sin 6x}{6} + 28\frac{\sin 4x}{4} - 56\frac{\sin 2x}{2} + 35x + c \right\rbrack

B

127[sin8x8+8sin6x6+28sin4x4+56sin2x235x+c]\frac{1}{2^{7}}\left\lbrack - \frac{\sin 8x}{8} + 8\frac{\sin 6x}{6} + 28\frac{\sin 4x}{4} + 56\frac{\sin 2x}{2} - 35x + c \right\rbrack

C

sin8x88sin6x6+28sin4x456sin2x2+35x+c\frac{\sin 8x}{8} - 8\frac{\sin 6x}{6} + 28\frac{\sin 4x}{4} - 56\frac{\sin 2x}{2} + 35x + c

D

None of these

Answer

127[sin8x88sin6x6+28sin4x456sin2x2+35x+c]\frac{1}{2^{7}}\left\lbrack \frac{\sin 8x}{8} - 8\frac{\sin 6x}{6} + 28\frac{\sin 4x}{4} - 56\frac{\sin 2x}{2} + 35x + c \right\rbrack

Explanation

Solution

Letcosx+isinx=y\cos x + i \sin x = y; then

2cosx=y+1y,2cosnx=yn+1yn2 \cos x = y + \frac { 1 } { y } , 2 \cos n x = y ^ { n } + \frac { 1 } { y ^ { n } } 2isinx=y1y,2isinnx=yn1yn\mathbf{\Rightarrow}\mathbf{2i}\mathbf{\sin}\mathbf{x}\mathbf{= y}\mathbf{-}\frac{\mathbf{1}}{\mathbf{y}}\mathbf{,2i}\mathbf{\sin}\mathbf{n}\mathbf{x =}\mathbf{y}^{\mathbf{n}}\mathbf{-}\frac{\mathbf{1}}{\mathbf{y}^{\mathbf{n}}} (Remember as the

standard results)

Thus 28i8sin8x=(y1y)82 ^ { 8 } i ^ { 8 } \sin ^ { 8 } x = \left( y - \frac { 1 } { y } \right) ^ { 8 } =(y8+1y8)8(y6+1y6)+28(y4+1y4)56(y2+1y2)+70= \left( y^{8} + \frac{1}{y^{8}} \right) - 8\left( y^{6} + \frac{1}{y^{6}} \right) + 28\left( y^{4} + \frac{1}{y^{4}} \right) - 56\left( y^{2} + \frac{1}{y^{2}} \right) + 70 =2cos8x16cos6x+56cos4x112cos2x+70= 2 \cos 8 x - 16 \cos 6 x + 56 \cos 4 x - 112 \cos 2 x + 70Thus sin8x=127(cos8x8cos6x+28cos4x56cos3x+35)\sin ^ { 8 } x = \frac { 1 } { 2 ^ { 7 } } ( \cos 8 x - 8 \cos 6 x + 28 \cos 4 x - 56 \cos 3 x + 35 ), and sin8xdx=127[sin8x88sin6x6+28sin4x456sin2x2+35x]+c\int \sin ^ { 8 } x d x = \frac { 1 } { 2 ^ { 7 } } \left[ \frac { \sin 8 x } { 8 } - 8 \frac { \sin 6 x } { 6 } + 28 \frac { \sin 4 x } { 4 } - 56 \frac { \sin 2 x } { 2 } + 35 x \right] + c