Question
Question: Integrate \(\int_{}^{}{\sin^{8}xdx}\)...
Integrate ∫sin8xdx
A
271[8sin8x−86sin6x+284sin4x−562sin2x+35x+c]
B
271[−8sin8x+86sin6x+284sin4x+562sin2x−35x+c]
C
8sin8x−86sin6x+284sin4x−562sin2x+35x+c
D
None of these
Answer
271[8sin8x−86sin6x+284sin4x−562sin2x+35x+c]
Explanation
Solution
Letcosx+isinx=y; then
2cosx=y+y1,2cosnx=yn+yn1 ⇒2isinx=y−y1,2isinnx=yn−yn1 (Remember as the
standard results)
Thus 28i8sin8x=(y−y1)8 =(y8+y81)−8(y6+y61)+28(y4+y41)−56(y2+y21)+70 =2cos8x−16cos6x+56cos4x−112cos2x+70Thus sin8x=271(cos8x−8cos6x+28cos4x−56cos3x+35), and ∫sin8xdx=271[8sin8x−86sin6x+284sin4x−562sin2x+35x]+c