Solveeit Logo

Question

Question: Integrate : \(\int{x{{\cot }^{-1}}(x)dx}\)...

Integrate : xcot1(x)dx\int{x{{\cot }^{-1}}(x)dx}

Explanation

Solution

Apply Integration By Parts i.e. f(x)g(x)dx=f(x)g(x)dxd(f(x))dx[g(x)dx]dx\int{f(x)g(x)dx=f(x)\int{g(x)dx}-\int{\\{\dfrac{d(f(x))}{dx}*[\int{g(x)dx]\\}dx}}} where f(x)f(x) and g(x)g(x) are functions of xx

Complete step by step answer:
Geometrical meaning of integration is area under the curve when it is drawn in XYX-Y plane i.e.
abQ(x)dx\int\limits_{a}^{b}{Q(x)}dx is equal to area under the curve which is enclosed in x=ax=a and x=bx=b
Likewise there is another term i.e. Differentiation which is opposite of integration.
Geometrical meaning of Differentiation is that it provides the slope drawn on y=f(x)y=f(x) at point x=ax=a i.e.
df(x)dx\dfrac{d\\{f(x)\\}}{dx} value atx=ax=a is a slope of tangent drawn at pointa,f(a)\\{a,f(a)\\}.
When we have to find the integration of multiplication of two functions we integration by parts i.e. f(x)g(x)dx=f(x)g(x)dxd(f(x))dx[g(x)dx]dx\int{f(x)g(x)dx=f(x)\int{g(x)dx}-\int{\\{\dfrac{d(f(x))}{dx}*[\int{g(x)dx]\\}dx}}}
Firstly before applying integration by parts we first define 1st{{1}^{st}} function and 2nd{{2}^{nd}} function according to ILATE rule the function comes first in the word ILATE will be treated as 1st{{1}^{st}}function and remaining function as 2nd{{2}^{nd}}
ILATE stands for I = Inverse Trigonometric function
L = Logarithm function
A = Algebraic function
T= Trigonometric function
E= Exponential function
Let us assume 1st{{1}^{st}} function be f(x)f(x) and 2nd{{2}^{nd}} function be g(x)g(x) then,
f(x)g(x)dx=1st2nddx=1st2nddxd(1st)dx(2nd)dxdx\int{f(x)g(x)dx=\int{{{1}^{st}}*{{2}^{nd}}dx={{1}^{st}}\int{{{2}^{nd}}dx-\int{\\{\dfrac{d({{1}^{st}})}{dx}*\int{({{2}^{nd}})dx}}}}}\\}dx
We have xcot1(x)dx\int{x{{\cot }^{-1}}(x)dx} ,So first we 1st{{1}^{st}} and 2nd{{2}^{nd}} function according to ILATE rule cot1(x){{\cot }^{-1}}(x) be the 1st{{1}^{st}} function and 2nd{{2}^{nd}} function.
So by applying integration by parts we have,
xcot1(x)dx=cot1(x)xdxd(cot1(x)dxxdxdx..................eq(1)\int{x*{{\cot }^{-1}}(x)dx={{\cot }^{-1}}(x)\int{xdx-\int{\\{\dfrac{d({{\cot }^{-1}}(x)}{dx}*\int{xdx\\}dx}}}}..................eq(1)
xdx=x22+c......................eq(2)\int{xdx=\dfrac{{{x}^{2}}}{2}+c}......................eq(2)
d(cot1x)dx=11+x2..............eq(3)\dfrac{d({{\cot }^{-1}}x)}{dx}=\dfrac{-1}{1+{{x}^{2}}}..............eq(3)
Put eq(2) and eq(3) in eq(1) then we get,

& \int{x*{{\cot }^{-1}}(x)dx={{\cot }^{-1}}(x)}*\dfrac{{{x}^{2}}}{2}-\int{\\{(}\dfrac{-1}{1+{{x}^{2}}})*\dfrac{{{x}^{2}}}{2}\\}dx \\\ & \int{x*{{\cot }^{-1}}(x)dx={{\cot }^{-1}}(x)}*\dfrac{{{x}^{2}}}{2}+\dfrac{1}{2}\int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx}..............eq(4) \\\ \end{aligned}$$ For $\int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx}$ we have to add $\pm 1$ to the numerator, so that we can form partial fractions . Therefore we get, $$\begin{aligned} & \int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx=}\int{\dfrac{{{x}^{2}}+1-1}{1+{{x}^{2}}}}dx \\\ & \int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx=}\int{(\dfrac{{{x}^{2}}+1}{{{x}^{2}}+1}-\dfrac{1}{1+{{x}^{2}}})}dx \\\ & \int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx=}\int{(1-\dfrac{1}{1+{{x}^{2}}})dx} \\\ & \int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx=}\int{1dx-\int{\dfrac{1}{1+{{x}^{2}}}dx}} \\\ \end{aligned}$$ As we know $$\int{\dfrac{1}{1+{{x}^{2}}}dx={{\tan }^{-1}}(x)+c}$$ So we get $$\int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx=}\dfrac{{{x}}}{1}-{{\tan }^{-1}}(x)+c'$$ put this result in eq(4) Therefore ,final result will be $$\begin{aligned} & \int{x*{{\cot }^{-1}}(x)dx={{\cot }^{-1}}(x)}*\dfrac{{{x}^{2}}}{2}+\dfrac{1}{2}\int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx}+c \\\ & \int{x*{{\cot }^{-1}}(x)dx={{\cot }^{-1}}(x)}*\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}}}{2}-\dfrac{{{\tan }^{-1}}(x)}{2}+c'+c \\\ \end{aligned}$$ **Note:** Integration to be learn by heart i.e. integration of $\sec x$ and $\cos ecx$ $$\begin{aligned} & \int{\sec (x)dx=\ln (\sec x+\tan x)+c} \\\ & \int{\cos ec(x)dx=\ln (\cos ecx-\cot x})+c \\\ \end{aligned}$$