Solveeit Logo

Question

Question: Integrate \(\int {\sqrt {1 - {t^2}} dt} \)...

Integrate 1t2dt\int {\sqrt {1 - {t^2}} dt}

Explanation

Solution

Here, we will assume the variable of the given function to be some trigonometric function. We will then differentiate the assumed value and substitute it in the given function. Then by using the trigonometric identity, we will simplify the integrand. Then by using the concept of integration, we integrate the function. Integration is the process of adding the small parts to find the whole parts.

Formula Used:
We will use the following formula:

  1. Differentiation formula: ddθ(sinθ)=cosθ\dfrac{d}{{d\theta }}\left( {\sin \theta } \right) = \cos \theta
  2. Trigonometric Identity: 1sin2θ=cos2θ1 - {\sin ^2}\theta = {\cos ^2}\theta
  3. Trigonometric Identity: cos2θ=1+cos2θ2{\cos ^2}\theta = \dfrac{{1 + \cos 2\theta }}{2}
  4. Trigonometric Identity: sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
  5. Integration formula: cdx=xc+C\int {cdx = xc + C}
  6. Integration formula: cos2xdx=sin2x2+C\int {\cos 2xdx = \dfrac{{\sin 2x}}{2} + C}

Complete step by step solution:
We are given that 1t2dt\int {\sqrt {1 - {t^2}} dt}
Let t=sinθt = \sin \theta
Now, we will differentiate the variable tt with respect to the variable θ\theta using the formula ddθ(sinθ)=cosθ\dfrac{d}{{d\theta }}\left( {\sin \theta } \right) = \cos \theta .
dtdθ=cosθ\Rightarrow \dfrac{{dt}}{{d\theta }} = \cos \theta
By rewriting the equation, we get
dt=cosθdθ\Rightarrow dt = \cos \theta \cdot d\theta
By substituting the variable and the differentiation of the variable in 1t2dt\int {\sqrt {1 - {t^2}} dt} , we get
1t2dt=1sin2θcosθdθ\int {\sqrt {1 - {t^2}} dt} = \int {\sqrt {1 - {{\sin }^2}\theta } } \cdot \cos \theta d\theta
By using the trigonometric identity 1sin2θ=cos2θ1 - {\sin ^2}\theta = {\cos ^2}\theta , we get
1sin2θcosθdθ=cos2θcosθdθ\Rightarrow \int {\sqrt {1 - {{\sin }^2}\theta } } \cdot \cos \theta d\theta = \int {\sqrt {{{\cos }^2}\theta } } \cdot \cos \theta d\theta
We know that the square of a square root of a number is the number. So, we get
1sin2θcosθdθ=cosθcosθdθ\Rightarrow \int {\sqrt {1 - {{\sin }^2}\theta } } \cdot \cos \theta d\theta = \int {\cos \theta } \cdot \cos \theta d\theta
By multiplying the terms, we get
1sin2θcosθdθ=cos2θdθ\Rightarrow \int {\sqrt {1 - {{\sin }^2}\theta } } \cdot \cos \theta d\theta = \int {{{\cos }^2}\theta } d\theta
Using the trigonometric identity cos2θ=1+cos2θ2{\cos ^2}\theta = \dfrac{{1 + \cos 2\theta }}{2}, we get
1sin2θcosθdθ=1+cos2θ2dθ\Rightarrow \int {\sqrt {1 - {{\sin }^2}\theta } } \cdot \cos \theta d\theta = \int {\dfrac{{1 + \cos 2\theta }}{2}} d\theta
By separating the terms, we get
1sin2θcosθdθ=12+cos2θ2dθ\Rightarrow \int {\sqrt {1 - {{\sin }^2}\theta } } \cdot \cos \theta d\theta = \int {\dfrac{1}{2} + \dfrac{{\cos 2\theta }}{2}} d\theta
1sin2θcosθdθ=12+cos2θ2dθ\Rightarrow \int {\sqrt {1 - {{\sin }^2}\theta } } \cdot \cos \theta d\theta = \int {\dfrac{1}{2} + \dfrac{{\cos 2\theta }}{2}} d\theta
Integrating the terms using the formula cdx=xc+C\int {cdx = xc + C} and cos2xdx=sin2x2+C\int {\cos 2xdx = \dfrac{{\sin 2x}}{2} + C} , we get
12+cos2θ2dθ=12θ+12sin2θ2+C\Rightarrow \int {\dfrac{1}{2} + \dfrac{{\cos 2\theta }}{2}} d\theta = \dfrac{1}{2}\theta + \dfrac{1}{2} \cdot \dfrac{{\sin 2\theta }}{2} + C
Using the trigonometric identity sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta , we get
12+cos2θ2dθ=12θ+122sinθcosθ2+C\Rightarrow \int {\dfrac{1}{2} + \dfrac{{\cos 2\theta }}{2}} d\theta = \dfrac{1}{2}\theta + \dfrac{1}{2} \cdot \dfrac{{2\sin \theta \cos \theta }}{2} + C
By rewriting the variable θ\theta in terms of the variable tt, we get
12+cos2θ2dθ=12(sin1t)+12t1t2+C\Rightarrow \int {\dfrac{1}{2} + \dfrac{{\cos 2\theta }}{2}} d\theta = \dfrac{1}{2}\left( {{{\sin }^{ - 1}}t} \right) + \dfrac{1}{2} \cdot t \cdot \sqrt {1 - {t^2}} + C

Therefore, the integration of 1t2dt\int {\sqrt {1 - {t^2}} dt} is 12(sin1t)+12t1t2+C\dfrac{1}{2}\left( {{{\sin }^{ - 1}}t} \right) + \dfrac{1}{2} \cdot t \cdot \sqrt {1 - {t^2}} + C.

Note:
We should always be conscious that whenever we are using the method of substitution in integration or whenever we are given the limits we should always change the upper limit and lower limit according to the substitution. The variable to be integrated also changes according to the substitution. When the integrand is in trigonometric function, then it satisfies the basic properties of integration. The given integral function is an indefinite integral since there are no limits in the integral.