Question
Question: Integrate: \(\int_{-\pi /2}^{\pi /2}{{{e}^{{{\sin }^{-2}}x}}.{{\sin }^{2n+1}}x\ dx}=\)...
Integrate: ∫−π/2π/2esin−2x.sin2n+1x dx=
Explanation
Solution
- If f(x) is an even function, then ∫−aaf(x) dx=2∫0af(x) dx .
If f(x) is an odd function, then ∫−aaf(x) dx=0 . - The expression sin−2x is equal to (sin−1x)2 and sin2n+1x is equal to (sinx)2n+1 .
- Use the property that sin(−θ)=−sinθ and sin−1(−x)=−sin−1x , to check if the expression to be integrated is an even expression or odd.
Complete step by step solution:
Let f(x)=esin−2x.sin2n+1x . It can also be written as f(x)=e(sin−1x)2.(sinx)2n+1 for a better apprehension.
Let us find the expression for f(−x) to compare and check whether it is an even function or odd.
f(−x)=e[sin−1(−x)]2.[sin(−x)]2n+1
Using the fact that sin(−θ)=−sinθ and sin−1(−x)=−sin−1x , we get:
⇒ f(−x)=e[−sin−1x]2.[−sinx]2n+1
⇒ f(−x)=e(−1)2(sin−1x)2.(−1)2n+1(sinx)2n+1
Since 2n+1 is odd for any value of n, we get:
⇒ f(−x)=e(sin−1x)2.(−1)(sinx)2n+1
⇒ f(−x)=−f(x)
This means that f(x) is an odd function and therefore −a∫af(x) dx must be 0, for any real number a.
∴ ∫−π/2π/2esin−2x.sin2n+1x dx=0 is the answer.
Note:
- A function f(x) is:
Even, if f(−x)=f(x) .
Odd, if f(−x)=−f(x) .
None, in other cases.
- An even/odd function is different from an even/odd number.
- (−x)even number=x and (−x)odd number=−x .
- Definite Integral: If ∫f(x)dx=g(x)+C , then a∫bf(x)dx=[g(x)]ab=g(b)−g(a) .