Solveeit Logo

Question

Question: Integrate \[\int {\dfrac{{1 + \sin x}}{{\sin x\left( {1 + \cos x} \right)}}} \,dx\]?...

Integrate 1+sinxsinx(1+cosx)dx\int {\dfrac{{1 + \sin x}}{{\sin x\left( {1 + \cos x} \right)}}} \,dx?

Explanation

Solution

In order to solve this question first, we assume a variable equal to the given integration. Then we make a substitution like t=tanx2t = \tan \dfrac{x}{2} and find the value of all other terms in terms of a new variable by using the formulas. Then simplify that expression and split all the parts and then integrate all the parts separately and again put the value in variable x.

Complete step by step answer:
Let I=1+sinxsinx(1+cosx)dxI = \int {\dfrac{{1 + \sin x}}{{\sin x\left( {1 + \cos x} \right)}}} \,dx
To solve this integration we use a substitution method.
After substituting t=tanx2t = \tan \dfrac{x}{2} we find the value of sinx\sin xand cosx\cos x in terms of yy
t=tanx2t = \tan \dfrac{x}{2}
On differentiating both sides with respect to xx.
dt=12sec2x2dxdt = \dfrac{1}{2}{\sec ^2}\dfrac{x}{2}dx
Now converting sec trigonometry function in terms of tan trigonometry function by using the identity.
dt=12(1+tan2x2)dxdt = \dfrac{1}{2}\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right)dx
Now putting the value of tanx2\tan \dfrac{x}{2} in terms of tt.
2dt1+t2=dx\dfrac{{2dt}}{{1 + {\operatorname{t} ^2}}} = dx
Now using the formula of half angle in terms of tan trigonometry function.
sinx=2tanx2tan2x2+1\sin x = \dfrac{{2\tan \dfrac{x}{2}}}{{{{\tan }^2}\dfrac{x}{2} + 1}} and cosx=1tan2x21+tan2x2\cos x = \dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}
Now putting the value of tanx2\tan \dfrac{x}{2} in terms of tt in both the formulas.
sinx=2tt2+1\sin x = \dfrac{{2t}}{{{t^2} + 1}} and cosx=1t21+t2\cos x = \dfrac{{1 - {t^2}}}{{1 + {\operatorname{t} ^2}}}
Now putting all these values in the integration.
I=1+2tt2+12tt2+1(1+1t21+t2)2dt1+t2I = \int {\dfrac{{1 + \dfrac{{2t}}{{{t^2} + 1}}}}{{\dfrac{{2t}}{{{t^2} + 1}}\left( {1 + \dfrac{{1 - {t^2}}}{{1 + {\operatorname{t} ^2}}}} \right)}}} \,\dfrac{{2dt}}{{1 + {\operatorname{t} ^2}}}
Now on taking the LCM in numerator and denominator.
I=1+t2+2tt2+12tt2+1(1+t2+1t21+t2)2dt1+t2I = \int {\dfrac{{\dfrac{{1 + {\operatorname{t} ^2} + 2t}}{{{t^2} + 1}}}}{{\dfrac{{2t}}{{{t^2} + 1}}\left( {\dfrac{{1 + {\operatorname{t} ^2} + 1 - {t^2}}}{{1 + {\operatorname{t} ^2}}}} \right)}}} \,\dfrac{{2dt}}{{1 + {\operatorname{t} ^2}}}
On canceling the common terms.
I=1+t2+2t2tdtI = \int {\dfrac{{1 + {\operatorname{t} ^2} + 2t}}{{2t}}} \,dt
Now splitting all these terms.
I=12tdt+t22tdt+2t2tdtI = \int {\dfrac{1}{{2t}}dt + \int {\dfrac{{{t^2}}}{{2t}}dt + \int {\dfrac{{2t}}{{2t}}dt} } }
Now simplifying all these terms.
I=121tdt+12tdt+dtI = \dfrac{1}{2}\int {\dfrac{1}{t}dt + \dfrac{1}{2}\int {tdt + \int {dt} } }
Now integrating all the parts.
I=12lnt+12t22+t+cI = \dfrac{1}{2}\ln t + \dfrac{1}{2}\dfrac{{{t^2}}}{2} + t + c
Now again putting the value of tt in terms of tanx2\tan \dfrac{x}{2}
I=12lntanx2+tan2x24+tanx2+cI = \dfrac{1}{2}\ln \tan \dfrac{x}{2} + \dfrac{{{{\tan }^2}\dfrac{x}{2}}}{4} + \tan \dfrac{x}{2} + c
Here c is the constant of the integration.
The integration of 1+sinxsinx(1+cosx)dx\int {\dfrac{{1 + \sin x}}{{\sin x\left( {1 + \cos x} \right)}}} \,dx is-
I=12lntanx2+tan2x24+tanx2+cI = \dfrac{1}{2}\ln \tan \dfrac{x}{2} + \dfrac{{{{\tan }^2}\dfrac{x}{2}}}{4} + \tan \dfrac{x}{2} + c

Note: In order to solve these types of questions students must have a knowledge of all the trigonometry identities and formulas and must have good practice to substitute the values. There are many places where students often make mistakes so take a look while solving the integration finding the values in terms of another variable.