Solveeit Logo

Question

Question: Integrate \[\int {\dfrac{1}{{1 + \tan x}}dx} \]....

Integrate 11+tanxdx\int {\dfrac{1}{{1 + \tan x}}dx} .

Explanation

Solution

Here we have to find the value of the given integral. We use many integration formulas to find the solution of the given integral. On doing simplification we will split the equation to solve it. Finally we get the required answer.

Formula used: We will use the following trigonometry formulas: sec2x=tan2x+1{\sec ^2}x = {\tan ^2}x + 1
Following integration formulas:
1vdv=logv+C\int {\dfrac{1}{v}dv = \log v + C}
1u2+1dx=tan1u+C\int {\dfrac{1}{{{u^2} + 1}}dx} = {\tan ^{ - 1}}u + C, Where CC is a constant.

Complete step-by-step solution:
It is given that the integral 1tanx+1dx....(1)\int {\dfrac{1}{{\tan x + 1}}dx} ....\left( 1 \right)
We will substitute by the following equation in the given integral: sec2x=tan2x+1{\sec ^2}x = {\tan ^2}x + 1
The integration will be: 1tanx+1dx\int {\dfrac{1}{{\tan x + 1}}dx}
On multiply and divide sec2x{\sec ^2}xwe get,
sec2x1sec2x(tanx+1)dx\Rightarrow \int {{{\sec }^2}x\dfrac{1}{{{{\sec }^2}x(\tan x + 1)}}dx}
On putting the formula and we get,
sec2x1(tanx+1)(tan2x+1)dx....(2)\Rightarrow \int {{{\sec }^2}x\dfrac{1}{{(\tan x + 1)({{\tan }^2}x + 1)}}dx} ....\left( 2 \right)
Now, we will substitute u=tanxu = \tan x,
Then we get by using simple derivation with respect toxx:
dudx=sec2x\Rightarrow \dfrac{{du}}{{dx}} = {\sec ^2}x
Taking cross multiply we get,
du=sec2x.dx\Rightarrow du = {\sec ^2}x.dx
We can re-write (2)\left( 2 \right)then the integration as following:
1(u+1)(u2+1)du\Rightarrow \int {\dfrac{1}{{(u + 1)({u^2} + 1)}}du}
Now, we can perform partial decomposition by the split up the numerator in following way:
1(u+1)(u2+1)du\Rightarrow \int {\dfrac{1}{{(u + 1)({u^2} + 1)}}du}
Then we can write it as
12×u2+1u2+1(u+1)(u2+1)du\Rightarrow \int {\dfrac{1}{2} \times \dfrac{{{u^2} + 1 - {u^2} + 1}}{{(u + 1)({u^2} + 1)}}} du
Now if we apply linearity of the equation:
12(u2+1(u+1)(u2+1)u21(u+1)(u2+1))du\Rightarrow \dfrac{1}{2}\int {\left( {\dfrac{{{u^2} + 1}}{{(u + 1)({u^2} + 1)}} - \dfrac{{{u^2} - 1}}{{(u + 1)({u^2} + 1)}}} \right)} du
Cancel the terms in numerator and denominator in the first term and in the second we can split up the square terms:
12(1(u+1)(u1)(u+1)(u+1)(u2+1))du\Rightarrow \dfrac{1}{2}\int {\left( {\dfrac{1}{{(u + 1)}} - \dfrac{{(u - 1)(u + 1)}}{{(u + 1)({u^2} + 1)}}} \right)} du
Again, cancel the terms:
12(1(u+1)(u1)(u2+1))du\Rightarrow \dfrac{1}{2}\int {\left( {\dfrac{1}{{(u + 1)}} - \dfrac{{(u - 1)}}{{({u^2} + 1)}}} \right)} du
On splitting the integration we can write it as,
121(u+1)du12(u1)(u2+1)du\Rightarrow \dfrac{1}{2}\int {\dfrac{1}{{(u + 1)}}du - \dfrac{1}{2}\int {\dfrac{{(u - 1)}}{{({u^2} + 1)}}du} }
On splitting the term and we get,
121(u+1)du12u(u2+1)du121u2+1du....(3)\Rightarrow \dfrac{1}{2}\int {\dfrac{1}{{(u + 1)}}du - \dfrac{1}{2}\int {\dfrac{u}{{({u^2} + 1)}}du - \dfrac{1}{2}\int {\dfrac{1}{{{u^2} + 1}}du} } } ....\left( 3 \right)
Now we have to find one by one and we get,
So, we take 121(u+1)du....(4)\dfrac{1}{2}\int {\dfrac{1}{{(u + 1)}}du} ....\left( 4 \right)
Here we will substitute v=u+1v = u + 1 and we get
Now take the derivation on the both side of the equation with respect touu, we get,
dvdu=1\Rightarrow \dfrac{{dv}}{{du}} = 1
Taking cross multiply and we get,
dv=du\Rightarrow dv = du
Now integrate (4)\left( 4 \right), we get:
12duu+1\Rightarrow \dfrac{1}{2}\int {\dfrac{{du}}{{u + 1}}}
Putting v=u+1v = u + 1 and we get,
12dvv\Rightarrow \dfrac{1}{2}\int {\dfrac{{dv}}{v}}
Using the formula and we get,
12ln(v)+k\Rightarrow \dfrac{1}{2}\ln (v) + k, Here kk is a constant.
Again, putting the value of v=u+1v = u + 1, we get:
12duu+1=12ln(u+1)+k\Rightarrow \dfrac{1}{2}\int {\dfrac{{du}}{{u + 1}}} = \dfrac{1}{2}\ln (u + 1) + k ,where k is an arbitrary constant.
Now substitute the u=tanxu = \tan x in the above equation:
12duu+1=12ln(tanx+1)+k....(5)\Rightarrow \dfrac{1}{2}\int {\dfrac{{du}}{{u + 1}}} = \dfrac{1}{2}\ln (\tan x + 1) + k....\left( 5 \right), where k is a constant.
Now we take 12u(u2+1)du...(6)\dfrac{1}{2}\int {\dfrac{u}{{({u^2} + 1)}}du} ...\left( 6 \right)
Now substitute p=u2+1p = {u^2} + 1 in (6)\left( 6 \right), we get:
Taking the derivation on pp with respect to uu:
dpdu=2u\Rightarrow \dfrac{{dp}}{{du}} = 2u.
Taking cross multiply we get,
dp=2udu\Rightarrow dp = 2udu
On dividing 22 on both sides and we get,
12dp=udu\Rightarrow \dfrac{1}{2}dp = udu.
So, the equation (6)\left( 6 \right)would become
1212dpp\Rightarrow \dfrac{1}{2}\int {\dfrac{1}{2}\dfrac{{dp}}{p}}
On multiply the terms and we get,
14dpp\Rightarrow \dfrac{1}{4}\int {\dfrac{{dp}}{p}}
By using the formula we get:
12uu2+1du=14ln(p)+z\Rightarrow \dfrac{1}{2}\int {\dfrac{u}{{{u^2} + 1}}du = \dfrac{1}{4}\ln (p) + z}, where zzis a constant.
Now putting the value of p=u2+1p = {u^2} + 1:
12uu2+1du=14ln(u2+1)+z\Rightarrow \dfrac{1}{2}\int {\dfrac{u}{{{u^2} + 1}}du = \dfrac{1}{4}\ln ({u^2} + 1) + z}, where zz is a constant.
Again, putting the value of u=tanxu = \tan x:
12uu2+1du=14ln(tan2x+1)+z....(7)\Rightarrow \dfrac{1}{2}\int {\dfrac{u}{{{u^2} + 1}}du = \dfrac{1}{4}\ln ({{\tan }^2}x + 1) + z} ....\left( 7 \right).
Now we take121u2+1du\dfrac{1}{2}\int {\dfrac{1}{{{u^2} + 1}}du}
Now the integration of the following iteration, by using the formula:
12tan1u+g\Rightarrow \dfrac{1}{2}{\tan ^{ - 1}}u + g, where gg is a constant.
Now putting the value of u=tanxu = \tan x:
121u2+1du=12tan1(tanx)+g....(8)\Rightarrow \dfrac{1}{2}\int {\dfrac{1}{{{u^2} + 1}}du = \dfrac{1}{2}{{\tan }^{ - 1}}(\tan x)} + g....\left( 8 \right), where gg is a constant.
On putting(5)\left( 5 \right), (7)\left( 7 \right) and (8)\left( 8 \right)in (3)\left( 3 \right) we get,
121(u+1)du12u(u2+1)du121u2+1du\Rightarrow \dfrac{1}{2}\int {\dfrac{1}{{(u + 1)}}du - \dfrac{1}{2}\int {\dfrac{u}{{({u^2} + 1)}}du - \dfrac{1}{2}\int {\dfrac{1}{{{u^2} + 1}}du} } }
ln(tanx+1)2ln(tan2x+1)4+tan1(tan(x))2+kz+g\Rightarrow \dfrac{{\ln (\left| {\tan x\left. { + 1} \right|} \right.)}}{2} - \dfrac{{\ln (\left| {{{\tan }^2}x\left. { + 1} \right|} \right.)}}{4} + \dfrac{{{{\tan }^{ - 1}}(\tan (x))}}{2} + k - z + g
On rewriting the term and we get,
ln(tanx+1)2ln(tan2x+1)4+tan1(tan(x))2+C1\Rightarrow \dfrac{{\ln (\left| {\tan x\left. { + 1} \right|} \right.)}}{2} - \dfrac{{\ln (\left| {{{\tan }^2}x\left. { + 1} \right|} \right.)}}{4} + \dfrac{{{{\tan }^{ - 1}}(\tan (x))}}{2} + {C_1}, where C1{C_1} is constant and C1=kz+g{C_1} = k - z + g.

The value of the given integral 1tanx+1dx=ln(tanx+1)2ln(tan2x+1)4+tan1(tan(x))2+C1 \int {\dfrac{1}{{\tan x + 1}}dx = } \dfrac{{\ln (\left| {\tan x\left. { + 1} \right|} \right.)}}{2} - \dfrac{{\ln (\left| {{{\tan }^2}x\left. { + 1} \right|} \right.)}}{4} + \dfrac{{{{\tan }^{ - 1}}(\tan (x))}}{2} + {C_1}

Note: Integration is a technique of combining two or more parts into a single function by taking two different ranges. By using this technique we try to find a function g(x)g(x), whose derivative is Dg(x)Dg(x), is equal to the given function f(x)f(x).
Integration is indicated by integral signs.
If integration is indicated by, it states an indefinite integration.
If integration is indicated by a limit of, it states a definite integration.
The symbol represents an infinitesimal displacement along xx.
Thus f(x)dx\int {f(x)dx} is the summation or concatenation of f(x)f(x) and dxdx at a given close circuit.
Always divide the whole part into the small sub parts to do the integration in ease.