Solveeit Logo

Question

Question: Integrate \[\int {\dfrac{1}{{1 + \tan x}}} dx\]...

Integrate 11+tanxdx\int {\dfrac{1}{{1 + \tan x}}} dx

Explanation

Solution

Hint : The simple meaning of trigonometry is calculations of triangles.
As we know that, tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}
By using this identity we will solve this problem. By substituting this value in the given equation, we can calculate the integration as we get terms of the integral in terms of sin and cos.

Complete step-by-step answer :
11+tanxdx\int {\dfrac{1}{{1 + \tan x}}} dx = 11+sinxcosx\int {\dfrac{1}{{1 + \dfrac{{\sin x}}{{\cos x}}}}} dxdx
B taking LCM
= 1sinx+cosxcosx\int {\dfrac{1}{{\dfrac{{\sin x + \cos x}}{{\cos x}}}}} dxdx

= cosxsinx+cox\int {\dfrac{{\cos x}}{{\sin x + cox}}} dxdx
Multiply and divide by 2
= 122cosxsinx+cosx\dfrac{1}{2}\int {\dfrac{{2\cos x}}{{\sin x + \cos x}}} dxdx
= 12(2cosxsinx+cosx1+1)\dfrac{1}{2}\int {\left( {\dfrac{{2\cos x}}{{\sin x + \cos x}} - 1 + 1} \right)} dxdx
122cosxsinx+cosx1+1\dfrac{1}{2}\int {\dfrac{{2\cos x}}{{\sin x + \cos x}}} - 1 + 1 dxdx
= 12(cosx+cosxsinx+cosxsinx+cosxsin+cosx+1)dx\dfrac{1}{2}\int {\left( {\dfrac{{\cos x + \cos x}}{{\sin x + \cos x}} - \dfrac{{\sin x + \cos x}}{{\sin + \cos x}} + 1} \right)} dx
= 12cosxsinxsinx+cosxdx+12dx\dfrac{1}{2}\int {\dfrac{{\cos x - \sin x}}{{\sin x + \cos x}}} dx + \dfrac{1}{2}\int {dx}
Put , sinx+cosx=u\sin x + \cos x = u
Now, differentiate this above equation, we get-
du=cosxsinxdu = \cos x - \sin x
By substituting, we will get equation like-
= 12udu+12x\dfrac{1}{2}\int {udu + \dfrac{1}{2}} x
= 12logu+12x\dfrac{1}{2}\log u + \dfrac{1}{2}x
By Substituting the value of u, we get-
= 12log(sinx+cosx)+12x+c\dfrac{1}{2}\log \left( {\sin x + \cos x} \right) + \dfrac{1}{2}x + c
11+tanxdx\int {\dfrac{1}{{1 + \tan x}}} dx = 12log(sinx+cosx)+12x+c\dfrac{1}{2}\log \left( {\sin x + \cos x} \right) + \dfrac{1}{2}x + c
So, the correct answer is “ 12log(sinx+cosx)+12x+c\dfrac{1}{2}\log \left( {\sin x + \cos x} \right) + \dfrac{1}{2}x + c ”.

Note : We have many formulas related to tangent like-
tan2θ=2tanθ1tan2θ\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}
tan(αβ)=tanαtanβ1+tanαtanβ\tan \left( {\alpha - \beta } \right) = \dfrac{{\tan \alpha - \tan \beta }}{{1 + \tan \alpha \tan \beta }}
tan(α+β)=tanα+tanβ1tanαtanβ\tan \left( {\alpha + \beta } \right) = \dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }}
We must be use the identities depending upon the nature of the questions and required answer asked.