Solveeit Logo

Question

Question: Integrate \[I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\phi }{{1 + \sin \phi }}}...

Integrate I=π43π4ϕ1+sinϕdϕI = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\phi }{{1 + \sin \phi }}} d\phi

Explanation

Solution

Here first we will apply the following property of definite integrals:
abf(x)dx=abf(a+bx)dx\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^b {f\left( {a + b - x} \right)dx} and some basic identities like:
sin(πθ)=sinθ\sin \left( {\pi - \theta } \right) = \sin \theta
1(sin2θ)=cos2θ1 - \left( {{{\sin }^2}\theta } \right) = {\cos ^2}\theta
then solve the integral further by putting the lower and upper limit to get the exact value of the given integral.

Complete step-by-step answer:
We are given:
I=π43π4ϕ1+sinϕdϕI = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\phi }{{1 + \sin \phi }}} d\phi ………………………….(1)
Applying the following property of definite integrals:
abf(x)dx=abf(a+bx)dx\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^b {f\left( {a + b - x} \right)dx}
We get:-
I=π43π4(3π4+π4ϕ)1+sin(3π4+π4ϕ)dϕI = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\dfrac{{3\pi }}{4} + \dfrac{\pi }{4} - \phi } \right)}}{{1 + \sin \left( {\dfrac{{3\pi }}{4} + \dfrac{\pi }{4} - \phi } \right)}}} d\phi
Solving it further we get:-

I=π43π4(3π+π4ϕ)1+sin(3π+π4ϕ)dϕ I=π43π4(πϕ)1+sin(πϕ)dϕ  I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\dfrac{{3\pi + \pi }}{4} - \phi } \right)}}{{1 + \sin \left( {\dfrac{{3\pi + \pi }}{4} - \phi } \right)}}} d\phi \\\ I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\pi - \phi } \right)}}{{1 + \sin \left( {\pi - \phi } \right)}}} d\phi \\\

Now we know that:
sin(πθ)=sinθ\sin \left( {\pi - \theta } \right) = \sin \theta
Therefore applying this identity we get:-
I=π43π4(πϕ)1+sinϕdϕI = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\left( {\pi - \phi } \right)}}{{1 + \sin \phi }}} d\phi
Now splitting the above quantity we get:-
I=π43π4π1+sinϕdϕπ43π4ϕ1+sinϕdϕI = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\pi }{{1 + \sin \phi }}} d\phi - \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\phi }{{1 + \sin \phi }}} d\phi
Now from equation 1 we know that :
I=π43π4ϕ1+sinϕdϕI = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\phi }{{1 + \sin \phi }}} d\phi
Therefore replacing the value in above equation we get:-

I=π43π4π1+sinϕdϕI 2I=π43π4π1+sinϕdϕ I=π2π43π411+sinϕdϕ  I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\pi }{{1 + \sin \phi }}} d\phi - I \\\ \Rightarrow 2I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{\pi }{{1 + \sin \phi }}} d\phi \\\ \Rightarrow I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{1}{{1 + \sin \phi }}} d\phi \\\

Now rationalizing the quantity inside the integral i.e, multiplying the denominator as well as the numerator by the conjugate of the denominator we get:-
Since the conjugate of 1+sinϕ1 + \sin \phi is 1sinϕ1 - \sin \phi
Therefore on multiplying we get:-
I=π2π43π411+sinϕ×1sinϕ1sinϕdϕI = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{1}{{1 + \sin \phi }} \times \dfrac{{1 - \sin \phi }}{{1 - \sin \phi }}} d\phi
Now applying the following identity:
(ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}
We get:-

I=π2π43π41sinϕ(1)2(sinϕ)2dϕ I=π2π43π41sinϕ1(sin2ϕ)dϕ  I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{1 - \sin \phi }}{{{{\left( 1 \right)}^2} - {{\left( {\sin \phi } \right)}^2}}}} d\phi \\\ I = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{1 - \sin \phi }}{{1 - \left( {{{\sin }^2}\phi } \right)}}} d\phi \\\

Now we know that:
1(sin2θ)=cos2θ1 - \left( {{{\sin }^2}\theta } \right) = {\cos ^2}\theta
Hence applying this identity we get:-
I=π2π43π41sinϕcos2ϕdϕI = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{1 - \sin \phi }}{{{{\cos }^2}\phi }}} d\phi
Now splitting the quantity in integral we get:-
I=π2π43π41cos2ϕdϕπ2π43π4sinϕcosϕ.cosϕdϕI = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{1}{{{{\cos }^2}\phi }}} d\phi - \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{\sin \phi }}{{\cos \phi .\cos \phi }}} d\phi
Now we know that:-

secθ=1cosθ tanθ=sinθcosθ  \sec \theta = \dfrac{1}{{\cos \theta }} \\\ \tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} \\\

Therefore substituting the values we get:-
I=π2π43π4sec2ϕ dϕπ2π43π4tanϕsecϕ dϕI = \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {{{\sec }^2}\phi {\text{ }}} d\phi - \dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\tan \phi \sec \phi {\text{ }}} d\phi
Now we will use the following known values of integrals:

sec2θdθ=tanθ tanθsecθdθ=secθ  \int {{{\sec }^2}\theta d\theta = \tan \theta } \\\ \int {\tan \theta \sec \theta d\theta } = \sec \theta \\\

Hence we get:-
I=π2[tanϕ]π43π4π2[secϕ]π43π4I = \dfrac{\pi }{2}\left[ {\tan \phi } \right]_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} - \dfrac{\pi }{2}\left[ {\sec \phi } \right]_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}}
Now evaluating the values by putting the upper and lower limits we get:-
I=π2[tan(3π4)tan(π4)]π2[sec(3π4)sec(π4)]I = \dfrac{\pi }{2}\left[ {\tan \left( {\dfrac{{3\pi }}{4}} \right) - \tan \left( {\dfrac{\pi }{4}} \right)} \right] - \dfrac{\pi }{2}\left[ {\sec \left( {\dfrac{{3\pi }}{4}} \right) - \sec \left( {\dfrac{\pi }{4}} \right)} \right]
Now we know that:

tan(3π4)=1 tan(π4)=1 sec(3π4)=2 sec(π4)=2  \tan \left( {\dfrac{{3\pi }}{4}} \right) = - 1 \\\ \tan \left( {\dfrac{\pi }{4}} \right) = 1 \\\ \sec \left( {\dfrac{{3\pi }}{4}} \right) = - \sqrt 2 \\\ \sec \left( {\dfrac{\pi }{4}} \right) = \sqrt 2 \\\

Putting the respective values we get:-

I = \dfrac{\pi }{2}\left[ {\left\\{ { - 1 - 1} \right\\} - \left\\{ { - \sqrt 2 - \sqrt 2 } \right\\}} \right] \\\ I = \dfrac{\pi }{2}\left[ { - 2 + 2\sqrt 2 } \right] \\\

Taking 2 as common from numerator we get:-

I=2π2[1+2] I=π(21)  I = \dfrac{{2\pi }}{2}\left[ { - 1 + \sqrt 2 } \right] \\\ I = \pi \left( {\sqrt 2 - 1} \right) \\\

Hence, the value of the given integral is π(21)\pi \left( {\sqrt 2 - 1} \right)

Note: Students may not use the main property of definite integrals and proceed directly but in such questions these properties should be used to simplify the question.
Also the student should substitute the values properly and use the identities used in the solutions to get the desired answer.