Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

Integrate sec2(sin1x)1x2\frac{{{\sec }^{2}}\,({{\sin }^{-1}}x)}{\sqrt{1-{{x}^{2}}}}

A

sin(tan1x)+c \sin \,({{\tan }^{-1}}x)+c

B

tan(sec1x)+c\tan \,({{\sec }^{-1}}x)+c

C

tan(sin1x)+c\tan \,({{\sin }^{-1}}x)+c

D

tan(cos1x)+c-\tan \,(co{{s}^{-1}}x)+c

Answer

tan(sin1x)+c\tan \,({{\sin }^{-1}}x)+c

Explanation

Solution

Let l=sec2(sin1x)1x2dxl=\int{\frac{{{\sec }^{2}}({{\sin }^{-1}}x)}{\sqrt{1-{{x}^{2}}}}}dx Again, let sin1x=t{{\sin }^{-1}}x=t
\Rightarrow dtdx=11x2\frac{dt}{dx}=\frac{1}{\sqrt{1-{{x}^{2}}}}
\Rightarrow dt=11x2dxdt=\frac{1}{\sqrt{1-{{x}^{2}}}}\,dx
\therefore l=sec2tdtl=\int{{{\sec }^{2}}\,t\,dt}
=tant+C=\tan \,t+C
=tan(sin1x)+C=\tan ({{\sin }^{-1}}x)+C