Solveeit Logo

Question

Question: integrate e^2x-e^-2x/e^2x+e^-2x...

integrate e^2x-e^-2x/e^2x+e^-2x

Answer

12ln(e2x+e2x)+C\frac{1}{2} \ln(e^{2x} + e^{-2x}) + C

Explanation

Solution

The integral e2xe2xe2x+e2xdx\int \frac{e^{2x} - e^{-2x}}{e^{2x} + e^{-2x}} dx is solved by substitution.

Let u=e2x+e2xu = e^{2x} + e^{-2x}. Then du=(2e2x2e2x)dx=2(e2xe2x)dxdu = (2e^{2x} - 2e^{-2x}) dx = 2(e^{2x} - e^{-2x}) dx.

This implies (e2xe2x)dx=12du(e^{2x} - e^{-2x}) dx = \frac{1}{2} du.

Substituting these into the integral gives 1u12du=121udu=12lnu+C\int \frac{1}{u} \cdot \frac{1}{2} du = \frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln|u| + C.

Replacing uu with e2x+e2xe^{2x} + e^{-2x} gives the final answer 12ln(e2x+e2x)+C\frac{1}{2} \ln(e^{2x} + e^{-2x}) + C.