Solveeit Logo

Question

Question: integrate: $e^{2x}$...

integrate: e2xe^{2x}

Answer

The final answer is 12e2x+C\boxed{\frac{1}{2}e^{2x} + C}

Explanation

Solution

To integrate the function e2xe^{2x}, we can use a simple substitution method. Let u=2xu = 2x. Differentiating both sides with respect to xx, we get: dudx=2\frac{du}{dx} = 2 This implies dx=12dudx = \frac{1}{2} du.

Now, substitute uu and dxdx into the integral: e2xdx=eu(12du)\int e^{2x} dx = \int e^u \left(\frac{1}{2} du\right) We can pull the constant 12\frac{1}{2} out of the integral: 12eudu\frac{1}{2} \int e^u du The integral of eue^u with respect to uu is eue^u. So, the result is: 12eu+C\frac{1}{2} e^u + C Finally, substitute back u=2xu = 2x: 12e2x+C\frac{1}{2} e^{2x} + C