Solveeit Logo

Question

Question: Integrate \[\dfrac{1}{1-\cot x}\] with respect to x....

Integrate 11cotx\dfrac{1}{1-\cot x} with respect to x.

Explanation

Solution

In this question, we have to find the value of 11cotxdx.\int{\dfrac{1}{1-\cot x}dx.} For this, we will use the following properties
(i)cotx=cosxsinx\left( i \right)\cot x=\dfrac{\cos x}{\sin x}
(ii)1xdx=lnx+c\left( ii \right)\int{\dfrac{1}{x}dx=\ln \left| x \right|+c}
(iii)1.dx=x\left( iii \right)\int{1.dx=x}
We will first simplify our given function and then apply (ii) and (iii) to evaluate our integral.

Complete step-by-step answer:
We are given our integral as 11cotxdx.\int{\dfrac{1}{1-\cot x}dx.} Let us first simplify the given functions. We know that cotx=cosxsinx,\cot x=\dfrac{\cos x}{\sin x}, so we get
11cosxsinxdx\int{\dfrac{1}{1-\dfrac{\cos x}{\sin x}}dx}
Taking LCM, we get,
1sinxcosxsinxdx\Rightarrow \int{\dfrac{1}{\dfrac{\sin x-\cos x}{\sin x}}dx}
sinxsinxcosxdx\Rightarrow \int{\dfrac{\sin x}{\sin x-\cos x}dx}
Now, multiplying and dividing by 2, we get,
2sinx2(sinxcosx)dx\Rightarrow \int{\dfrac{2\sin x}{2\left( \sin x-\cos x \right)}dx}
122sinx(sinxcosx)dx\Rightarrow \dfrac{1}{2}\int{\dfrac{2\sin x}{\left( \sin x-\cos x \right)}dx}
12sinx+sinxsinxcosxdx\Rightarrow \dfrac{1}{2}\int{\dfrac{\sin x+\sin x}{\sin x-\cos x}dx}
Adding and subtracting cos x in the numerator, we get,
12sinx+sinx+cosxcosxsinxcosxdx\Rightarrow \dfrac{1}{2}\int{\dfrac{\sin x+\sin x+\cos x-\cos x}{\sin x-\cos x}dx}
Rearranging the terms, we get,
12(sinxcosxsinxcosx+sinx+cosxsinxcosx)dx\Rightarrow \dfrac{1}{2}\int{\left( \dfrac{\sin x-\cos x}{\sin x-\cos x}+\dfrac{\sin x+\cos x}{\sin x-\cos x} \right)dx}
12(1+sinx+cosxsinxcosx)dx\Rightarrow \dfrac{1}{2}\int{\left( 1+\dfrac{\sin x+\cos x}{\sin x-\cos x} \right)dx}
Separating the integrals, we get,
121.dx+12(sinx+cosxsinxcosx)dx......(i)\Rightarrow \dfrac{1}{2}\int{1.dx+\dfrac{1}{2}\int{\left( \dfrac{\sin x+\cos x}{\sin x-\cos x} \right)}dx}......\left( i \right)
Now, let us evaluate the integral separately. Let us assume, I1=1.dx{{I}_{1}}=\int{1.dx} and I2=(sinx+cosx)(sinxcosx)dx.{{I}_{2}}=\int{\dfrac{\left( \sin x+\cos x \right)}{\left( \sin x-\cos x \right)}dx}. Let us evaluate I1{{I}_{1}} first. So, we have, I1=1.dx.{{I}_{1}}=\int{1.dx}.
We know that, 1.dx=x+c,\int{1.dx}=x+c, so we get,
I1=x+c1[c1 is any constant]{{I}_{1}}=x+{{c}_{1}}\left[ {{c}_{1}}\text{ is any constant} \right]
Now, let us evaluate I2.{{I}_{2}}. We have,
I2=(sinx+cosx)(sinxcosx)dx{{I}_{2}}=\int{\dfrac{\left( \sin x+\cos x \right)}{\left( \sin x-\cos x \right)}dx}
Let us put sin x – cos x = t. Taking the derivative with respect to x, we get,
ddx(sinxcosx)=dtdx\Rightarrow \dfrac{d}{dx}\left( \sin x-\cos x \right)=\dfrac{dt}{dx}
Since, ddxsinx=cosx\dfrac{d}{dx}\sin x=\cos x and ddxcosx=sinx.\dfrac{d}{dx}\cos x=-\sin x. So, we get,
cosx(sinx)=dtdx\Rightarrow \cos x-\left( -\sin x \right)=\dfrac{dt}{dx}
sinx+cosx=dtdx\Rightarrow \sin x+\cos x=\dfrac{dt}{dx}
Cross multiplying we get,
dt=(sinx+cosx)dx\Rightarrow dt=\left( \sin x+\cos x \right)dx
In I2{{I}_{2}} putting the values, we get,
I2=dtt{{I}_{2}}=\int{\dfrac{dt}{t}}
I2=1tdt\Rightarrow {{I}_{2}}=\int{\dfrac{1}{t}dt}
We know that, 1xdx=lnx+c.\int{\dfrac{1}{x}dx=\ln \left| x \right|+c}.
Hence, we get,
I2=lnt+c2[c2 is any constant]\Rightarrow {{I}_{2}}=\ln \left| t \right|+{{c}_{2}}\left[ {{c}_{2}}\text{ is any constant} \right]
Since t was supposed to be sin x – cos x, so,
I2=lnsinxcosx+c2\Rightarrow {{I}_{2}}=\ln \left| \sin x-\cos x \right|+{{c}_{2}}
Now putting the values of I1{{I}_{1}} and I2{{I}_{2}} in (i), we get,
12(x+c1)+12(lnsinxcosx+c2)\Rightarrow \dfrac{1}{2}\left( x+{{c}_{1}} \right)+\dfrac{1}{2}\left( \ln \left| \sin x-\cos x \right|+{{c}_{2}} \right)
x2+c12+12lnsinxcosx+c22\Rightarrow \dfrac{x}{2}+\dfrac{{{c}_{1}}}{2}+\dfrac{1}{2}\ln \left| \sin x-\cos x \right|+\dfrac{{{c}_{2}}}{2}
x2+12lnsinxcosx+c[c=c12+c22]\Rightarrow \dfrac{x}{2}+\dfrac{1}{2}\ln \left| \sin x-\cos x \right|+c\left[ c=\dfrac{{{c}_{1}}}{2}+\dfrac{{{c}_{2}}}{2} \right]
Hence,
11cotxdx=x2+12lnsinxcosx+c\int{\dfrac{1}{1-\cot x}dx}=\dfrac{x}{2}+\dfrac{1}{2}\ln \left| \sin x-\cos x \right|+c

Note: The most common mistake that students can make is to forget adding the constant term after evaluating the integral. Take care of the signs while simplifying the fractions. Also, take care of the signs while substituting the values of sin x – cos x. Make sure to take the negative sign with sin x as a derivative of cos x. At the end, we have taken c12+c22\dfrac{{{c}_{1}}}{2}+\dfrac{{{c}_{2}}}{2} as c because c,c1,c2c,{{c}_{1}},{{c}_{2}} are any constants and adding c1,c2{{c}_{1}},{{c}_{2}} will give any constant which we assumed as c.