Solveeit Logo

Question

Question: integrate cos root x / root x...

integrate cos root x / root x

Answer

2 sin(√x) + C

Explanation

Solution

To integrate the given function, we use the method of substitution.

Let the given integral be I=cos(x)xdxI = \int \frac{\cos(\sqrt{x})}{\sqrt{x}} dx.

Let's make a substitution: Let u=xu = \sqrt{x}.

Now, we need to find dudu in terms of dxdx. Differentiate uu with respect to xx: dudx=ddx(x1/2)\frac{du}{dx} = \frac{d}{dx}(x^{1/2}) dudx=12x(1/21)\frac{du}{dx} = \frac{1}{2}x^{(1/2 - 1)} dudx=12x1/2\frac{du}{dx} = \frac{1}{2}x^{-1/2} dudx=12x\frac{du}{dx} = \frac{1}{2\sqrt{x}}

Now, rearrange to solve for dx/xdx/\sqrt{x}: 2du=1xdx2 du = \frac{1}{\sqrt{x}} dx

Substitute u=xu = \sqrt{x} and 2du=1xdx2 du = \frac{1}{\sqrt{x}} dx into the integral: I=cos(u)(2du)I = \int \cos(u) \cdot (2 du) I=2cos(u)duI = 2 \int \cos(u) du

Now, integrate with respect to uu: The integral of cos(u)\cos(u) is sin(u)\sin(u). I=2sin(u)+CI = 2 \sin(u) + C

Finally, substitute back u=xu = \sqrt{x}: I=2sin(x)+CI = 2 \sin(\sqrt{x}) + C

Where CC is the constant of integration.

The final answer is 2sin(x)+C\boxed{2 \sin(\sqrt{x}) + C}.

Explanation of the solution: The integral cos(x)xdx\int \frac{\cos(\sqrt{x})}{\sqrt{x}} dx is solved using substitution. Let u=xu = \sqrt{x}. Differentiating gives du=12xdxdu = \frac{1}{2\sqrt{x}} dx, which means 2du=1xdx2 du = \frac{1}{\sqrt{x}} dx. Substituting these into the integral yields 2cos(u)du2 \int \cos(u) du. Integrating cos(u)\cos(u) gives sin(u)\sin(u), so the result is 2sin(u)+C2 \sin(u) + C. Substituting back u=xu = \sqrt{x}, the final answer is 2sin(x)+C2 \sin(\sqrt{x}) + C.