Solveeit Logo

Question

Question: Integrate by using the substitution suggested in bracket: \(\int {12\left( {{y^4} + 4{y^2} + 1} \r...

Integrate by using the substitution suggested in bracket:
12(y4+4y2+1)(y3+2y)dy\int {12\left( {{y^4} + 4{y^2} + 1} \right)\left( {{y^3} + 2y} \right)dy} , (use,u=y4+4y2+1)\left( {use,u = {y^4} + 4{y^2} + 1} \right)

Explanation

Solution

First find the differentiation of the term given in the problem, u=y4+4y2+1u = {y^4} + 4{y^2} + 1 with respect to yy and then simplify the result and try to obtain (y3+2y)\left( {{y^3} + 2y} \right).
Use these values to make the substitution in the given integral and then find the integral after the substitution. Finally, re-substitute the value of uu the obtained solution.
This will give the required result.

Complete step-by-step answer:
Consider the given integral as:
I=12(y4+4y2+1)(y3+2y)dyI = \int {12\left( {{y^4} + 4{y^2} + 1} \right)\left( {{y^3} + 2y} \right)dy}
The goal of the problem is to find the value of the integral using the substitution given in the problem.
(use,u=y4+4y2+1)\left( {use,u = {y^4} + 4{y^2} + 1} \right)
u=y4+4y2+1u = {y^4} + 4{y^2} + 1
Differentiate both sides with respect to y.
dudy=ddy(y4+4y2+1)\dfrac{{du}}{{dy}} = \dfrac{d}{{dy}}\left( {{y^4} + 4{y^2} + 1} \right)
dudy=4y3+8y\dfrac{{du}}{{dy}} = 4{y^3} + 8y
Simplify the result by taking 44 as a common in the integrand, then we have the result:
dudy=4(y3+2y)\dfrac{{du}}{{dy}} = 4\left( {{y^3} + 2y} \right)
du4=(y3+2y)dy\Rightarrow \dfrac{{du}}{4} = \left( {{y^3} + 2y} \right)dy
Substitute du4=(y3+2y)dy\dfrac{{du}}{4} = \left( {{y^3} + 2y} \right)dy and u=y4+4y2+1u = {y^4} + 4{y^2} + 1 in the integral II, so we have
I=12(u)du4I = \int {12\left( u \right)\dfrac{{du}}{4}}
Simplify the obtained result and express again in simplified form:
I=3(u)duI = 3\int {\left( u \right)du}
Integrate with respect to uu and obtain the integral.
I=3(u22)+CI = 3\left( {\dfrac{{{u^2}}}{2}} \right) + C, where CC is the integral constant.
I=32(u2)+CI = \dfrac{3}{2}\left( {{u^2}} \right) + C
Now, substitute the value u=y4+4y2+1u = {y^4} + 4{y^2} + 1 into the equation:
I=32(y4+4y2+1)2+CI = \dfrac{3}{2}{\left( {{y^4} + 4{y^2} + 1} \right)^2} + C
The obtained integral of the given problem is 32(y4+4y2+1)2+C\dfrac{3}{2}{\left( {{y^4} + 4{y^2} + 1} \right)^2} + C, where CC is the integral constant.

Note: The integration by substitution is also said as “The reverse chain rule”.
This is the method to integrate in some special cases. Let f(g(x))f\left( {g\left( x \right)} \right)be the integrand and we have to find the integral of the function [f(g(x))g(x)]\left[ {f\left( {g\left( x \right)} \right)g'\left( x \right)} \right], then we use this method of integral.
So, the integral is given as:
[f(g(x))g(x)]dx\Rightarrow \int {\left[ {f\left( {g\left( x \right)} \right)g'\left( x \right)} \right]dx}
Now, assume thatg(x)=ug\left( x \right) = u and differentiate both sides with respect to xx.
g(x)dx=dug'\left( x \right)dx = du
Now, make the substitution g(x)=ug\left( x \right) = u and g(x)dx=dug'\left( x \right)dx = duin the integral.
f(u)du\Rightarrow \int {f\left( u \right)du}
Now, we can easily find the integral and re-substitute the value of uu in the resultant integral.