Question
Question: integrate: (2cosx-3sinx)/(6cosx+4sinx)...
integrate: (2cosx-3sinx)/(6cosx+4sinx)
Answer
21ln∣3cosx+2sinx∣+C
Explanation
Solution
The given integral is I=∫6cosx+4sinx2cosx−3sinxdx.
- Observe the denominator: 6cosx+4sinx=2(3cosx+2sinx).
- Let u=3cosx+2sinx.
- Calculate the differential du: du=dxd(3cosx+2sinx)dx du=(−3sinx+2cosx)dx du=(2cosx−3sinx)dx.
- Substitute u and du into the integral: The numerator (2cosx−3sinx)dx becomes du. The denominator 6cosx+4sinx becomes 2u. So, the integral transforms to: I=∫2udu I=21∫u1du
- Integrate with respect to u: I=21ln∣u∣+C
- Substitute back u=3cosx+2sinx: I=21ln∣3cosx+2sinx∣+C
Alternatively, noting that ln∣2(3cosx+2sinx)∣=ln∣2∣+ln∣3cosx+2sinx∣, the constant 21ln∣2∣ can be absorbed into the arbitrary constant C. Thus, the result can also be written as: I=21ln∣6cosx+4sinx∣+C′
The most direct and simplified form is: I=21ln∣3cosx+2sinx∣+C