Solveeit Logo

Question

Question: integrate: (2cosx-3sinx)/(6cosx+4sinx)...

integrate: (2cosx-3sinx)/(6cosx+4sinx)

Answer

12ln3cosx+2sinx+C\frac{1}{2} \ln|3\cos x + 2\sin x| + C

Explanation

Solution

The given integral is I=2cosx3sinx6cosx+4sinxdxI = \int \frac{2\cos x - 3\sin x}{6\cos x + 4\sin x} dx.

  1. Observe the denominator: 6cosx+4sinx=2(3cosx+2sinx)6\cos x + 4\sin x = 2(3\cos x + 2\sin x).
  2. Let u=3cosx+2sinxu = 3\cos x + 2\sin x.
  3. Calculate the differential dudu: du=ddx(3cosx+2sinx)dxdu = \frac{d}{dx}(3\cos x + 2\sin x) dx du=(3sinx+2cosx)dxdu = (-3\sin x + 2\cos x) dx du=(2cosx3sinx)dxdu = (2\cos x - 3\sin x) dx.
  4. Substitute uu and dudu into the integral: The numerator (2cosx3sinx)dx(2\cos x - 3\sin x) dx becomes dudu. The denominator 6cosx+4sinx6\cos x + 4\sin x becomes 2u2u. So, the integral transforms to: I=du2uI = \int \frac{du}{2u} I=121uduI = \frac{1}{2} \int \frac{1}{u} du
  5. Integrate with respect to uu: I=12lnu+CI = \frac{1}{2} \ln|u| + C
  6. Substitute back u=3cosx+2sinxu = 3\cos x + 2\sin x: I=12ln3cosx+2sinx+CI = \frac{1}{2} \ln|3\cos x + 2\sin x| + C

Alternatively, noting that ln2(3cosx+2sinx)=ln2+ln3cosx+2sinx\ln|2(3\cos x + 2\sin x)| = \ln|2| + \ln|3\cos x + 2\sin x|, the constant 12ln2\frac{1}{2}\ln|2| can be absorbed into the arbitrary constant CC. Thus, the result can also be written as: I=12ln6cosx+4sinx+CI = \frac{1}{2} \ln|6\cos x + 4\sin x| + C'

The most direct and simplified form is: I=12ln3cosx+2sinx+CI = \frac{1}{2} \ln|3\cos x + 2\sin x| + C