Solveeit Logo

Question

Question: Integrate 1/(e^2x+e^x)dx...

Integrate 1/(e^2x+e^x)dx

Answer

ln(1 + e^{-x}) - e^{-x} + C

Explanation

Solution

To integrate the given function 1e2x+ex\frac{1}{e^{2x} + e^x}, we follow these steps:

  1. Substitution: Let the integral be I=1e2x+exdxI = \int \frac{1}{e^{2x} + e^x} dx. First, factor out exe^x from the denominator: I=1ex(ex+1)dxI = \int \frac{1}{e^x(e^x + 1)} dx. Now, let u=exu = e^x. Then, differentiate uu with respect to xx: du=exdxdu = e^x dx. From this, we can express dxdx in terms of dudu and uu: dx=duex=duudx = \frac{du}{e^x} = \frac{du}{u}.

  2. Transform the Integral: Substitute uu and dxdx into the integral: I=1u(u+1)duuI = \int \frac{1}{u(u+1)} \cdot \frac{du}{u} I=1u2(u+1)duI = \int \frac{1}{u^2(u+1)} du.

  3. Partial Fraction Decomposition: The integrand is a rational function, so we use partial fraction decomposition. Let 1u2(u+1)=Au+Bu2+Cu+1\frac{1}{u^2(u+1)} = \frac{A}{u} + \frac{B}{u^2} + \frac{C}{u+1}. To find the constants AA, BB, and CC, multiply both sides by u2(u+1)u^2(u+1): 1=Au(u+1)+B(u+1)+Cu21 = A u(u+1) + B(u+1) + C u^2.

    • Set u=0u=0: 1=A(0)+B(0+1)+C(0)21 = A(0) + B(0+1) + C(0)^2 1=B    B=11 = B \implies B=1.

    • Set u=1u=-1: 1=A(1)(1+1)+B(1+1)+C(1)21 = A(-1)(-1+1) + B(-1+1) + C(-1)^2 1=A(0)+B(0)+C(1)1 = A(0) + B(0) + C(1) 1=C    C=11 = C \implies C=1.

    • Set u=1u=1 (or any other convenient value) and substitute the values of BB and CC: 1=A(1)(1+1)+B(1+1)+C(1)21 = A(1)(1+1) + B(1+1) + C(1)^2 1=2A+2B+C1 = 2A + 2B + C 1=2A+2(1)+11 = 2A + 2(1) + 1 1=2A+2+11 = 2A + 2 + 1 1=2A+31 = 2A + 3 2A=2    A=12A = -2 \implies A=-1.

    So, the partial fraction decomposition is: 1u2(u+1)=1u+1u2+1u+1\frac{1}{u^2(u+1)} = -\frac{1}{u} + \frac{1}{u^2} + \frac{1}{u+1}.

  4. Integrate: Now, integrate each term: I=(1u+1u2+1u+1)duI = \int \left( -\frac{1}{u} + \frac{1}{u^2} + \frac{1}{u+1} \right) du I=1udu+u2du+1u+1duI = -\int \frac{1}{u} du + \int u^{-2} du + \int \frac{1}{u+1} du I=lnu+u11+lnu+1+CI = -\ln|u| + \frac{u^{-1}}{-1} + \ln|u+1| + C' I=lnu1u+lnu+1+CI = -\ln|u| - \frac{1}{u} + \ln|u+1| + C'. Combine the logarithmic terms: I=lnu+1u1u+CI = \ln\left|\frac{u+1}{u}\right| - \frac{1}{u} + C'.

  5. Substitute Back: Substitute u=exu = e^x back into the expression. Since ex>0e^x > 0 for all real xx, ex=ex|e^x| = e^x and ex+1=ex+1|e^x+1| = e^x+1. I=ln(ex+1ex)1ex+CI = \ln\left(\frac{e^x+1}{e^x}\right) - \frac{1}{e^x} + C' I=ln(1+1ex)ex+CI = \ln\left(1 + \frac{1}{e^x}\right) - e^{-x} + C' I=ln(1+ex)ex+CI = \ln(1 + e^{-x}) - e^{-x} + C'.