Question
Question: Integrate 1/(e^2x+e^x)dx...
Integrate 1/(e^2x+e^x)dx
ln(1 + e^{-x}) - e^{-x} + C
Solution
To integrate the given function e2x+ex1, we follow these steps:
-
Substitution: Let the integral be I=∫e2x+ex1dx. First, factor out ex from the denominator: I=∫ex(ex+1)1dx. Now, let u=ex. Then, differentiate u with respect to x: du=exdx. From this, we can express dx in terms of du and u: dx=exdu=udu.
-
Transform the Integral: Substitute u and dx into the integral: I=∫u(u+1)1⋅udu I=∫u2(u+1)1du.
-
Partial Fraction Decomposition: The integrand is a rational function, so we use partial fraction decomposition. Let u2(u+1)1=uA+u2B+u+1C. To find the constants A, B, and C, multiply both sides by u2(u+1): 1=Au(u+1)+B(u+1)+Cu2.
-
Set u=0: 1=A(0)+B(0+1)+C(0)2 1=B⟹B=1.
-
Set u=−1: 1=A(−1)(−1+1)+B(−1+1)+C(−1)2 1=A(0)+B(0)+C(1) 1=C⟹C=1.
-
Set u=1 (or any other convenient value) and substitute the values of B and C: 1=A(1)(1+1)+B(1+1)+C(1)2 1=2A+2B+C 1=2A+2(1)+1 1=2A+2+1 1=2A+3 2A=−2⟹A=−1.
So, the partial fraction decomposition is: u2(u+1)1=−u1+u21+u+11.
-
-
Integrate: Now, integrate each term: I=∫(−u1+u21+u+11)du I=−∫u1du+∫u−2du+∫u+11du I=−ln∣u∣+−1u−1+ln∣u+1∣+C′ I=−ln∣u∣−u1+ln∣u+1∣+C′. Combine the logarithmic terms: I=lnuu+1−u1+C′.
-
Substitute Back: Substitute u=ex back into the expression. Since ex>0 for all real x, ∣ex∣=ex and ∣ex+1∣=ex+1. I=ln(exex+1)−ex1+C′ I=ln(1+ex1)−e−x+C′ I=ln(1+e−x)−e−x+C′.