Solveeit Logo

Question

Question: integral of sec(x+a)sec(x+b)...

integral of sec(x+a)sec(x+b)

Answer

1sin(ab)lncos(x+b)cos(x+a)+C\frac{1}{\sin(a-b)} \ln \left| \frac{\cos(x+b)}{\cos(x+a)} \right| + C

Explanation

Solution

To solve the integral sec(x+a)sec(x+b)dx\int \sec(x+a)\sec(x+b) dx, we can rewrite the secant functions in terms of cosine:

I=1cos(x+a)cos(x+b)dxI = \int \frac{1}{\cos(x+a)\cos(x+b)} dx

We can use a trigonometric identity to manipulate the numerator. Consider the term sin(ab)\sin(a-b). We can write this as sin((x+a)(x+b))\sin((x+a)-(x+b)). Using the sine subtraction formula, sin(AB)=sinAcosBcosAsinB\sin(A-B) = \sin A \cos B - \cos A \sin B, we have:

sin(ab)=sin((x+a)(x+b))=sin(x+a)cos(x+b)cos(x+a)sin(x+b)\sin(a-b) = \sin((x+a)-(x+b)) = \sin(x+a)\cos(x+b) - \cos(x+a)\sin(x+b)

We can multiply and divide the integrand by sin(ab)\sin(a-b), assuming sin(ab)0\sin(a-b) \neq 0 (i.e., abnπa-b \neq n\pi for any integer nn).

I=1sin(ab)sin(ab)cos(x+a)cos(x+b)dxI = \frac{1}{\sin(a-b)} \int \frac{\sin(a-b)}{\cos(x+a)\cos(x+b)} dx

Substitute the expanded form of sin(ab)\sin(a-b) in the numerator:

I=1sin(ab)sin(x+a)cos(x+b)cos(x+a)sin(x+b)cos(x+a)cos(x+b)dxI = \frac{1}{\sin(a-b)} \int \frac{\sin(x+a)\cos(x+b) - \cos(x+a)\sin(x+b)}{\cos(x+a)\cos(x+b)} dx

Now, split the fraction into two terms:

I=1sin(ab)(sin(x+a)cos(x+b)cos(x+a)cos(x+b)cos(x+a)sin(x+b)cos(x+a)cos(x+b))dxI = \frac{1}{\sin(a-b)} \int \left( \frac{\sin(x+a)\cos(x+b)}{\cos(x+a)\cos(x+b)} - \frac{\cos(x+a)\sin(x+b)}{\cos(x+a)\cos(x+b)} \right) dx

Simplify the terms:

I=1sin(ab)(sin(x+a)cos(x+a)sin(x+b)cos(x+b))dxI = \frac{1}{\sin(a-b)} \int \left( \frac{\sin(x+a)}{\cos(x+a)} - \frac{\sin(x+b)}{\cos(x+b)} \right) dx

I=1sin(ab)(tan(x+a)tan(x+b))dxI = \frac{1}{\sin(a-b)} \int (\tan(x+a) - \tan(x+b)) dx

Now, integrate each term. The integral of tan(u)\tan(u) is lncos(u)+C-\ln|\cos(u)| + C.

tan(x+a)dx=lncos(x+a)+C1\int \tan(x+a) dx = -\ln|\cos(x+a)| + C_1

tan(x+b)dx=lncos(x+b)+C2\int \tan(x+b) dx = -\ln|\cos(x+b)| + C_2

Substitute these back into the expression for II:

I=1sin(ab)[lncos(x+a)(lncos(x+b))]+CI = \frac{1}{\sin(a-b)} [-\ln|\cos(x+a)| - (-\ln|\cos(x+b)|)] + C

I=1sin(ab)[lncos(x+a)+lncos(x+b)]+CI = \frac{1}{\sin(a-b)} [-\ln|\cos(x+a)| + \ln|\cos(x+b)|] + C

Using the logarithm property lnAlnB=ln(A/B)\ln A - \ln B = \ln(A/B):

I=1sin(ab)lncos(x+b)cos(x+a)+CI = \frac{1}{\sin(a-b)} \ln \left| \frac{\cos(x+b)}{\cos(x+a)} \right| + C

Alternatively, using the integral tan(u)du=lnsec(u)+C\int \tan(u) du = \ln|\sec(u)| + C:

I=1sin(ab)[lnsec(x+a)lnsec(x+b)]+CI = \frac{1}{\sin(a-b)} [\ln|\sec(x+a)| - \ln|\sec(x+b)|] + C

I=1sin(ab)lnsec(x+a)sec(x+b)+CI = \frac{1}{\sin(a-b)} \ln \left| \frac{\sec(x+a)}{\sec(x+b)} \right| + C

Since sec(u)=1/cos(u)\sec(u) = 1/\cos(u), sec(x+a)sec(x+b)=1/cos(x+a)1/cos(x+b)=cos(x+b)cos(x+a)\frac{\sec(x+a)}{\sec(x+b)} = \frac{1/\cos(x+a)}{1/\cos(x+b)} = \frac{\cos(x+b)}{\cos(x+a)}, so both forms are equivalent.

The final answer is 1sin(ab)lncos(x+b)cos(x+a)+C\frac{1}{\sin(a-b)} \ln \left| \frac{\cos(x+b)}{\cos(x+a)} \right| + C.