Question
Question: integral of sec(x+a)sec(x+b)...
integral of sec(x+a)sec(x+b)
sin(a−b)1lncos(x+a)cos(x+b)+C
Solution
To solve the integral ∫sec(x+a)sec(x+b)dx, we can rewrite the secant functions in terms of cosine:
I=∫cos(x+a)cos(x+b)1dx
We can use a trigonometric identity to manipulate the numerator. Consider the term sin(a−b). We can write this as sin((x+a)−(x+b)). Using the sine subtraction formula, sin(A−B)=sinAcosB−cosAsinB, we have:
sin(a−b)=sin((x+a)−(x+b))=sin(x+a)cos(x+b)−cos(x+a)sin(x+b)
We can multiply and divide the integrand by sin(a−b), assuming sin(a−b)=0 (i.e., a−b=nπ for any integer n).
I=sin(a−b)1∫cos(x+a)cos(x+b)sin(a−b)dx
Substitute the expanded form of sin(a−b) in the numerator:
I=sin(a−b)1∫cos(x+a)cos(x+b)sin(x+a)cos(x+b)−cos(x+a)sin(x+b)dx
Now, split the fraction into two terms:
I=sin(a−b)1∫(cos(x+a)cos(x+b)sin(x+a)cos(x+b)−cos(x+a)cos(x+b)cos(x+a)sin(x+b))dx
Simplify the terms:
I=sin(a−b)1∫(cos(x+a)sin(x+a)−cos(x+b)sin(x+b))dx
I=sin(a−b)1∫(tan(x+a)−tan(x+b))dx
Now, integrate each term. The integral of tan(u) is −ln∣cos(u)∣+C.
∫tan(x+a)dx=−ln∣cos(x+a)∣+C1
∫tan(x+b)dx=−ln∣cos(x+b)∣+C2
Substitute these back into the expression for I:
I=sin(a−b)1[−ln∣cos(x+a)∣−(−ln∣cos(x+b)∣)]+C
I=sin(a−b)1[−ln∣cos(x+a)∣+ln∣cos(x+b)∣]+C
Using the logarithm property lnA−lnB=ln(A/B):
I=sin(a−b)1lncos(x+a)cos(x+b)+C
Alternatively, using the integral ∫tan(u)du=ln∣sec(u)∣+C:
I=sin(a−b)1[ln∣sec(x+a)∣−ln∣sec(x+b)∣]+C
I=sin(a−b)1lnsec(x+b)sec(x+a)+C
Since sec(u)=1/cos(u), sec(x+b)sec(x+a)=1/cos(x+b)1/cos(x+a)=cos(x+a)cos(x+b), so both forms are equivalent.
The final answer is sin(a−b)1lncos(x+a)cos(x+b)+C.