Solveeit Logo

Question

Question: integral of sec(x+a) cosec(x+b)...

integral of sec(x+a) cosec(x+b)

Answer

The integral is:

I=1sin(ba)lnsin(x+a)sin(x+b)+CI = \frac{1}{\sin(b-a)} \ln \left| \frac{\sin(x+a)}{\sin(x+b)} \right| + C
Explanation

Solution

Let the integral be I=sec(x+a)cosec(x+b)dxI = \int \sec(x+a) \operatorname{cosec}(x+b) dx. We can rewrite the secant and cosecant functions in terms of sine and cosine: I=1cos(x+a)1sin(x+b)dx=1cos(x+a)sin(x+b)dxI = \int \frac{1}{\cos(x+a)} \cdot \frac{1}{\sin(x+b)} dx = \int \frac{1}{\cos(x+a) \sin(x+b)} dx.

To evaluate this integral, we use the identity sin(AB)=sinAcosBcosAsinB\sin(A-B) = \sin A \cos B - \cos A \sin B. Let A=x+bA = x+b and B=x+aB = x+a. Then AB=(x+b)(x+a)=baA-B = (x+b) - (x+a) = b-a. We multiply the numerator and denominator by sin(ba)\sin(b-a) (assuming banπb-a \neq n\pi for integer nn, so sin(ba)0\sin(b-a) \neq 0): I=1sin(ba)sin(ba)cos(x+a)sin(x+b)dxI = \frac{1}{\sin(b-a)} \int \frac{\sin(b-a)}{\cos(x+a) \sin(x+b)} dx I=1sin(ba)sin((x+b)(x+a))cos(x+a)sin(x+b)dxI = \frac{1}{\sin(b-a)} \int \frac{\sin((x+b) - (x+a))}{\cos(x+a) \sin(x+b)} dx Using the sine subtraction formula in the numerator: I=1sin(ba)sin(x+b)cos(x+a)cos(x+b)sin(x+a)cos(x+a)sin(x+b)dxI = \frac{1}{\sin(b-a)} \int \frac{\sin(x+b) \cos(x+a) - \cos(x+b) \sin(x+a)}{\cos(x+a) \sin(x+b)} dx

Now, split the integrand into two terms: I=1sin(ba)(sin(x+b)cos(x+a)cos(x+a)sin(x+b)cos(x+b)sin(x+a)cos(x+a)sin(x+b))dxI = \frac{1}{\sin(b-a)} \int \left( \frac{\sin(x+b) \cos(x+a)}{\cos(x+a) \sin(x+b)} - \frac{\cos(x+b) \sin(x+a)}{\cos(x+a) \sin(x+b)} \right) dx

Simplify each term: I=1sin(ba)(sin(x+b)sin(x+b)cos(x+b)sin(x+a)cos(x+a)sin(x+b))dxI = \frac{1}{\sin(b-a)} \int \left( \frac{\sin(x+b)}{\sin(x+b)} - \frac{\cos(x+b) \sin(x+a)}{\cos(x+a) \sin(x+b)} \right) dx I=1sin(ba)(1cos(x+b)sin(x+a)cos(x+a)sin(x+b))dxI = \frac{1}{\sin(b-a)} \int \left( 1 - \frac{\cos(x+b) \sin(x+a)}{\cos(x+a) \sin(x+b)} \right) dx I=1sin(ba)(1cos(x+b)sin(x+b)sin(x+a)cos(x+a))dxI = \frac{1}{\sin(b-a)} \int \left( 1 - \frac{\cos(x+b)}{\sin(x+b)} \cdot \frac{\sin(x+a)}{\cos(x+a)} \right) dx I=1sin(ba)(1cot(x+b)tan(x+a))dxI = \frac{1}{\sin(b-a)} \int \left( 1 - \cot(x+b) \tan(x+a) \right) dx I=1sin(ba)(1cos(x+b)sin(x+a)cos(x+a)sin(x+b))dxI = \frac{1}{\sin(b-a)} \int \left( 1 - \frac{\cos(x+b) \sin(x+a)}{\cos(x+a) \sin(x+b)} \right) dx I=1sin(ba)(sin(x+b)cos(x+a)cos(x+b)sin(x+a)sin(x+b)cos(x+a))dxI = \frac{1}{\sin(b-a)} \int \left( \frac{\sin(x+b) \cos(x+a) - \cos(x+b) \sin(x+a)}{\sin(x+b) \cos(x+a)} \right) dx I=1sin(ba)sin((x+b)(x+a))sin(x+b)cos(x+a)dxI = \frac{1}{\sin(b-a)} \int \frac{\sin((x+b) - (x+a))}{\sin(x+b) \cos(x+a)} dx I=1sin(ba)sin(ba)sin(x+b)cos(x+a)dxI = \frac{1}{\sin(b-a)} \int \frac{\sin(b-a)}{\sin(x+b) \cos(x+a)} dx I=1sin(x+b)cos(x+a)dxI = \int \frac{1}{\sin(x+b) \cos(x+a)} dx

I=1sin(ba)sin(x+b)cos(x+a)cos(x+b)sin(x+a)sin(x+b)cos(x+a)dxI = \frac{1}{\sin(b-a)} \int \frac{\sin(x+b)\cos(x+a) - \cos(x+b)\sin(x+a)}{\sin(x+b)\cos(x+a)}dx I=1sin(ba)cot(x+a)cot(x+b)dxI = \frac{1}{\sin(b-a)} \int \cot(x+a) - \cot(x+b) dx I=1sin(ba)[lnsin(x+a)lnsin(x+b)]+CI = \frac{1}{\sin(b-a)} [\ln|\sin(x+a)| - \ln|\sin(x+b)|] + C I=1sin(ba)lnsin(x+a)sin(x+b)+CI = \frac{1}{\sin(b-a)} \ln \left| \frac{\sin(x+a)}{\sin(x+b)} \right| + C