Question
Question: integral of sec(x+a) cosec(x+b)...
integral of sec(x+a) cosec(x+b)
The integral is:
I=sin(b−a)1lnsin(x+b)sin(x+a)+CSolution
Let the integral be I=∫sec(x+a)cosec(x+b)dx. We can rewrite the secant and cosecant functions in terms of sine and cosine: I=∫cos(x+a)1⋅sin(x+b)1dx=∫cos(x+a)sin(x+b)1dx.
To evaluate this integral, we use the identity sin(A−B)=sinAcosB−cosAsinB. Let A=x+b and B=x+a. Then A−B=(x+b)−(x+a)=b−a. We multiply the numerator and denominator by sin(b−a) (assuming b−a=nπ for integer n, so sin(b−a)=0): I=sin(b−a)1∫cos(x+a)sin(x+b)sin(b−a)dx I=sin(b−a)1∫cos(x+a)sin(x+b)sin((x+b)−(x+a))dx Using the sine subtraction formula in the numerator: I=sin(b−a)1∫cos(x+a)sin(x+b)sin(x+b)cos(x+a)−cos(x+b)sin(x+a)dx
Now, split the integrand into two terms: I=sin(b−a)1∫(cos(x+a)sin(x+b)sin(x+b)cos(x+a)−cos(x+a)sin(x+b)cos(x+b)sin(x+a))dx
Simplify each term: I=sin(b−a)1∫(sin(x+b)sin(x+b)−cos(x+a)sin(x+b)cos(x+b)sin(x+a))dx I=sin(b−a)1∫(1−cos(x+a)sin(x+b)cos(x+b)sin(x+a))dx I=sin(b−a)1∫(1−sin(x+b)cos(x+b)⋅cos(x+a)sin(x+a))dx I=sin(b−a)1∫(1−cot(x+b)tan(x+a))dx I=sin(b−a)1∫(1−cos(x+a)sin(x+b)cos(x+b)sin(x+a))dx I=sin(b−a)1∫(sin(x+b)cos(x+a)sin(x+b)cos(x+a)−cos(x+b)sin(x+a))dx I=sin(b−a)1∫sin(x+b)cos(x+a)sin((x+b)−(x+a))dx I=sin(b−a)1∫sin(x+b)cos(x+a)sin(b−a)dx I=∫sin(x+b)cos(x+a)1dx
I=sin(b−a)1∫sin(x+b)cos(x+a)sin(x+b)cos(x+a)−cos(x+b)sin(x+a)dx I=sin(b−a)1∫cot(x+a)−cot(x+b)dx I=sin(b−a)1[ln∣sin(x+a)∣−ln∣sin(x+b)∣]+C I=sin(b−a)1lnsin(x+b)sin(x+a)+C