Solveeit Logo

Question

Question: Integral \[\int\limits_{0}^{1}{\left| \sin \left( 2\pi x \right) \right|dx}\] is equal to A. 0, ...

Integral 01sin(2πx)dx\int\limits_{0}^{1}{\left| \sin \left( 2\pi x \right) \right|dx} is equal to
A. 0,
B. 1π-\dfrac{1}{\pi },
C. 1π\dfrac{1}{\pi },
D. 2π\dfrac{2}{\pi }.

Explanation

Solution

We start solving the problem by taking 2πx=t2\pi x=t and converting dxdx in terms of dtdt. We then substitute the obtained results and use the properties of modulus functions in place of integrand to proceed through the problem. We then use the results sinxdx=cosx+C\int{\sin xdx=-\cos x+C}, abf(x)dx=[f(x)]ab=f(b)f(a)\int\limits_{a}^{b}{{{f}^{'}}\left( x \right)dx=\left[ f\left( x \right) \right]_{a}^{b}=f\left( b \right)-f\left( a \right)} and make necessary calculations to get the required result.

Complete step by step answer:
As mentioned in the question, we have to find the value of the definite integral 01sin(2πx)dx\int\limits_{0}^{1}{\left| \sin \left( 2\pi x \right) \right|dx}.
Now, first we will substitute the integrand as follows
2πx=t2\pi x=t.
Differentiating on both sides, we get.
d(2πx)=dtd\left( 2\pi x \right)=dt.
2πdx=dt\Rightarrow 2\pi dx=dt.
dx=dt2π\Rightarrow dx=\dfrac{dt}{2\pi }.
Now, on doing these changes, the integral transforms into the following 02πsin(t)dt2π\int\limits_{0}^{2\pi }{\left| \sin \left( t \right) \right|\dfrac{dt}{2\pi }}.
We know the property of modulus function as \left| x \right|=\left\\{ \begin{matrix} x\text{, if }x>0 \\\ 0\text{, if }x=0 \\\ -x\text{, if }x<0 \\\ \end{matrix} \right.. We use this property for the integrand.
We know that the sine function becomes positive from 0 to π\pi negative from π\pi to 2π2\pi .
So, now, the value of this integral can be evaluated as follows
=0πsin(t)dt2π+π2πsin(t)dt2π=\int\limits_{0}^{\pi }{\left| \sin \left( t \right) \right|\dfrac{dt}{2\pi }}+\int\limits_{\pi }^{2\pi }{\left| \sin \left( t \right) \right|\dfrac{dt}{2\pi }}.
=12π×(0πsintdt+π2π(sint)dt)=\dfrac{1}{2\pi }\times \left( \int\limits_{0}^{\pi }{\sin tdt}+\int\limits_{\pi }^{2\pi }{\left( -\sin t \right)dt} \right).
=12π×(0πsintdtπ2πsintdt)=\dfrac{1}{2\pi }\times \left( \int\limits_{0}^{\pi }{\sin tdt}-\int\limits_{\pi }^{2\pi }{\sin tdt} \right) ---(1).
We know that sinxdx=cosx+C\int{\sin xdx=-\cos x+C} and abf(x)dx=[f(x)]ab=f(b)f(a)\int\limits_{a}^{b}{{{f}^{'}}\left( x \right)dx=\left[ f\left( x \right) \right]_{a}^{b}=f\left( b \right)-f\left( a \right)}. We use this result in equation (1).
=12π×([cost]0π[cost]π2π)=\dfrac{1}{2\pi }\times \left( \left[ -\cos t \right]_{0}^{\pi }-\left[ -\cos t \right]_{\pi }^{2\pi } \right).
=12π×([cosπ(cos0)][cos2π(cosπ)])=\dfrac{1}{2\pi }\times \left( \left[ -\cos \pi -\left( -\cos 0 \right) \right]-\left[ -\cos 2\pi -\left( -\cos \pi \right) \right] \right).
=12π×([(1)(1)][1((1))])=\dfrac{1}{2\pi }\times \left( \left[ -\left( -1 \right)-\left( -1 \right) \right]-\left[ -1-\left( -\left( -1 \right) \right) \right] \right).
=12π×([1+1][11])=\dfrac{1}{2\pi }\times \left( \left[ 1+1 \right]-\left[ -1-1 \right] \right).
=12π×([2][2])=\dfrac{1}{2\pi }\times \left( \left[ 2 \right]-\left[ -2 \right] \right).
=12π×(4)=\dfrac{1}{2\pi }\times \left( 4 \right).
=2π=\dfrac{2}{\pi }.
∴ The value of 01sin(2πx)dx\int\limits_{0}^{1}{\left| \sin \left( 2\pi x \right) \right|dx} is 2π\dfrac{2}{\pi }.

So, the correct answer is “Option D”.

Note: We can also solve the problem by using the property of the periodic function. From the graph of sinx\left| \sin x \right|, we can see that the repetition in the values of y in the curve. So, we can take limits from 0 to π\pi for getting the result. We know that for a periodic function f of period P with n=kPn=kP is onf(x)dx=k0pf(x)dx\int\limits_{o}^{n}{f\left( x \right)dx=k\int\limits_{0}^{p}{f\left( x \right)dx}} to use for the integrand.