Solveeit Logo

Question

Question: The rate of a reaction quadruples when the temperature changes from 293K to 313K. Calculate the ener...

The rate of a reaction quadruples when the temperature changes from 293K to 313K. Calculate the energy of activation (in kJ/mol) of the reaction assuming that is does not change with temperature (nearest integer).

Answer

53

Explanation

Solution

The integrated Arrhenius equation relates the rate constants (k1,k2k_1, k_2) at two different temperatures (T1,T2T_1, T_2) to the activation energy (EaE_a) and the ideal gas constant (RR):

ln(k2k1)=EaR(1T11T2)\ln\left(\frac{k_2}{k_1}\right) = \frac{E_a}{R}\left(\frac{1}{T_1} - \frac{1}{T_2}\right)

Given T1=293T_1 = 293 K, T2=313T_2 = 313 K, and k2k1=4\frac{k_2}{k_1} = 4. Using R=8.314R = 8.314 J/mol·K, we substitute these values:

ln(4)=Ea8.314(12931313)\ln(4) = \frac{E_a}{8.314}\left(\frac{1}{293} - \frac{1}{313}\right)

Rearranging for EaE_a:

Ea=8.314×ln(4)(12931313)52857.6 J/molE_a = \frac{8.314 \times \ln(4)}{\left(\frac{1}{293} - \frac{1}{313}\right)} \approx 52857.6 \text{ J/mol}

Converting to kJ/mol and rounding to the nearest integer gives 5353 kJ/mol.