Solveeit Logo

Question

Question: \(\int_{}^{}{x|x|}\)dx =...

xx\int_{}^{}{x|x|}dx =

A

x33\frac{x^{3}}{3}

B

x2x3\frac{x^{2}|x|}{3}

C

x2x2\frac{x^{2}|x|}{2}

D

None

Answer

x2x3\frac{x^{2}|x|}{3}

Explanation

Solution

I =. |x| dx = x\int_{}^{}{|x|} . x dx

(Integrating by parts taking |x| as first function)

= |x| . xx\int_{}^{}\frac{|x|}{x} . x22\frac{x^{2}}{2}dx = x2x2\frac{x^{2}|x|}{2}

12\frac{1}{2} x dxŽ I (1+12)\left( 1 + \frac{1}{2} \right) = x2x2\frac{x^{2}|x|}{2} Ž I = 13x2x\frac{1}{3}x^{2}|x|