Solveeit Logo

Question

Question: \[\int_{}^{}{x\sec^{2}xdx =}\]...

xsec2xdx=\int_{}^{}{x\sec^{2}xdx =}

A

tanx+logcosx+c\tan x + {logcos}x + c

B

x22sec2x+logcosx+c\frac{x^{2}}{2}\sec^{2}x + {logcos}x + c

C

xtanx+logsecx+cx\tan x + {logsec}x + c

D

xtanx+logcosx+cx\tan x + {logcos}x + c

Answer

xtanx+logsecx+cx\tan x + {logsec}x + c

Explanation

Solution

xsec2xdx=xtanxtanxdx\int_{}^{}{x\sec^{2}xdx = x\tan x - \int_{}^{}{\tan xdx}} =xtanx+log(cosx)+c= x\tan x + \log(\cos x) + c