Solveeit Logo

Question

Question: \[\int_{}^{}{x^{51}(\tan^{- 1}x + \cot^{- 1}x)\mspace{6mu} dx =}\]...

x51(tan1x+cot1x)6mudx=\int_{}^{}{x^{51}(\tan^{- 1}x + \cot^{- 1}x)\mspace{6mu} dx =}

A

x5252(tan1x+cot1x)+c\frac{x^{52}}{52}(\tan^{- 1}x + \cot^{- 1}x) + c

B

x5252(tan1xcot1x)+c\frac{x^{52}}{52}(\tan^{- 1}x - \cot^{- 1}x) + c

C

πx52104+π2+c\frac{\pi x^{52}}{104} + \frac{\pi}{2} + c

D

None of these

Answer

πx52104+π2+c\frac{\pi x^{52}}{104} + \frac{\pi}{2} + c

Explanation

Solution

cos2x(cosx+sinx)26mudx=\int_{}^{}{\frac{\cos 2x}{(\cos x + \sin x)^{2}}\mspace{6mu} dx =}

logcosx+sinx+c\log\sqrt{\cos x + \sin x} + c.