Solveeit Logo

Question

Question: \(\int_{}^{}x^{3}\)logx dx =...

x3\int_{}^{}x^{3}logx dx =

A

x4logx4\frac{x^{4}\log x}{4} + c

B

116\frac{1}{16} [4x4logx– x4] + c

C

18\frac{1}{8} [x4 logx – 4x2] +c

D

116\frac{1}{16} [4x4 logx + x4] + c

Answer

116\frac{1}{16} 4x<sup>4</sup>logxx<sup>4</sup>4x<sup>4</sup>logx– x<sup>4</sup> + c

Explanation

Solution

x3\int_{}^{}x^{3}logxdx=logxx3\int_{}^{}x^{3}dx{ddx(logx).x3dx}dx\int_{}^{}{\left\{ \frac{d}{dx}(\log x).\int_{}^{}{x^{3}dx} \right\} dx}

=x44\frac{x^{4}}{4}logx – 1x.x44dx\int_{}^{}\frac{1}{x}.\frac{x^{4}}{4}dx = x44\frac{x^{4}}{4}log x – 14\frac { 1 } { 4 } x3\int_{}^{}x^{3}dx

= x4 + c ̃116\frac{1}{16} [4x4 log x – x4] + c