Question
Question: \(\int_{}^{}x^{3}\)logx dx =...
∫x3logx dx =
A
4x4logx + c
B
161 [4x4logx– x4] + c
C
81 [x4 logx – 4x2] +c
D
161 [4x4 logx + x4] + c
Answer
161 4x<sup>4</sup>logx–x<sup>4</sup> + c
Explanation
Solution
∫x3logxdx=logx∫x3dx∫{dxd(logx).∫x3dx}dx
=4x4logx – ∫x1.4x4dx = 4x4log x – 41 ∫x3dx
= x4 + c ̃161 [4x4 log x – x4] + c