Solveeit Logo

Question

Question: \(\int_{}^{}{x^{- 3}5^{1/x^{2}}dx = k.5^{1/x^{2}} + c,}\) then k is...

x351/x2dx=k.51/x2+c,\int_{}^{}{x^{- 3}5^{1/x^{2}}dx = k.5^{1/x^{2}} + c,} then k is

A

12log5+C- \frac{1}{2\log 5} + C

B

2log5- 2\log 5

C

2log5\frac{2}{\log 5}

D

2log5\frac{- 2}{\log 5}

Answer

12log5+C- \frac{1}{2\log 5} + C

Explanation

Solution

Put x2=tx^{- 2} = t 2x3dx=dt\Rightarrow - 2x^{- 3}dx = dt x3dx=dt2\Rightarrow x^{- 3}dx = - \frac{dt}{2}

x351/x2dx=125tdt=125tloge5+c\int_{}^{}{x^{- 3}5^{1/x^{2}}dx} = - \frac{1}{2}\int_{}^{}5^{t}dt = - \frac{1}{2}\frac{5^{t}}{\log_{e}5} + c =12loge5.51/x2+C= \frac{1}{2\log_{e}5}.5^{1/x^{2}} + C. On comparing, k=12loge5k = - \frac{1}{2\log_{e}5}