Solveeit Logo

Question

Question: \[\int_{}^{}{\text{cos} ⥂ \text{e}\text{c}^{4}x}dx\]...

cos⥂ec4xdx\int_{}^{}{\text{cos} ⥂ \text{e}\text{c}^{4}x}dx

A

cotx+cot3x3+c\cot x + \frac{\cot^{3}x}{3} + c

B

tanx+tan3x3+c\tan x + \frac{\tan^{3}x}{3} + c

C

cotxcot3x3+c\cot x - \frac{\cot^{3}x}{3} + c

D

tanxtan3x3+c- \tan x - \frac{\tan^{3}x}{3} + c

Answer

cotxcot3x3+c\cot x - \frac{\cot^{3}x}{3} + c

Explanation

Solution

cos⥂ec4xdx=\int_{}^{}{c\text{os} ⥂ \text{e}\text{c}^{4}x}dx =

cosec2x(1+cot2x)dx\int \operatorname { cosec } ^ { 2 } x \left( 1 + \cot ^ { 2 } x \right) d x

=cotx+(cotx)33+c.= - \cot x + \frac{(\cot x)^{3}}{3} + c.