Solveeit Logo

Question

Question: \(\int_{}^{}{\tan^{n}xdx,}\)equals –...

tannxdx,\int_{}^{}{\tan^{n}xdx,}equals –

A

tann1x(n1)\frac{\tan^{n–1}x}{(n - 1)}tann2x\int_{}^{}{\tan^{n–2}x}dx

B

tann1x(n2)\frac{\tan^{n–1}x}{(n - 2)}tann3\int_{}^{}\tan^{n–3}x dx

C

tann2x(n1)\frac{\tan^{n–2}x}{(n - 1)}tann\int_{}^{}\tan^{n}x dx

D

None of these

Answer

tann1x(n1)\frac{\tan^{n–1}x}{(n - 1)}tann2x\int_{}^{}{\tan^{n–2}x}dx

Explanation

Solution

Let In = tann\int_{}^{}\tan^{n}x dx

= tann2\int_{}^{}\tan^{n - 2}x . tan2 x dx**=** tann2\int_{}^{}\tan^{n - 2}x . (sec2 x – 1) dx

= tann2\int_{}^{}\tan^{n - 2}x . sec2x dx – tann2\int_{}^{}\tan^{n - 2}x dx In = tann1x(n1)\frac{\tan^{n - 1}x}{(n - 1)}– In – 2

Hence tann\int_{}^{}\tan^{n}x dx = tann1x(n1)\frac{\tan^{n - 1}x}{(n - 1)}tann2xdx\int_{}^{}{\tan^{n - 2}xdx}