Question
Question: \(\int_{}^{}{\tan^{n}xdx,}\)equals –...
∫tannxdx,equals –
A
(n−1)tann–1x – ∫tann–2xdx
B
(n−2)tann–1x – ∫tann–3x dx
C
(n−1)tann–2x – ∫tannx dx
D
None of these
Answer
(n−1)tann–1x – ∫tann–2xdx
Explanation
Solution
Let In = ∫tannx dx
= ∫tann−2x . tan2 x dx**=** ∫tann−2x . (sec2 x – 1) dx
= ∫tann−2x . sec2x dx – ∫tann−2x dx In = (n−1)tann−1x– In – 2
Hence ∫tannx dx = (n−1)tann−1x– ∫tann−2xdx