Solveeit Logo

Question

Question: \[\int_{}^{}{\tan^{5}\theta d\theta =}\]...

tan5θdθ=\int_{}^{}{\tan^{5}\theta d\theta =}

A

tan4θ4tan2θ2+logsecθ+c\frac{\tan^{4}\theta}{4} - \frac{\tan^{2}\theta}{2} + {logsec}\theta + c

B

tan4θ4tan2θ2logsecθ+c\frac{\tan^{4}\theta}{4} - \frac{\tan^{2}\theta}{2} - {logsec}\theta + c

C

tan4θ4tan2θ2+logsecθ+c\frac{\tan^{4}\theta}{4} - \frac{\tan^{2}\theta}{2} + \log|\sec\theta| + c

D

None of these

Answer

tan4θ4tan2θ2+logsecθ+c\frac{\tan^{4}\theta}{4} - \frac{\tan^{2}\theta}{2} + \log|\sec\theta| + c

Explanation

Solution

tan5θdθ=I5=tan4θ4I3\int_{}^{}{\tan^{5}\theta d\theta} = I_{5} = \frac{\tan^{4}\theta}{4} - I_{3}

=tan4θ4tan2θ2+I1= \frac{\tan^{4}\theta}{4} - \frac{\tan^{2}\theta}{2} + I_{1} =tan4θ4tan2θ2+logsecθ+c.= \frac{\tan^{4}\theta}{4} - \frac{\tan^{2}\theta}{2} + \log|\sec\theta| + c.