Solveeit Logo

Question

Question: \[\int_{}^{}{\tan^{4}x\mspace{6mu} dx =}\]...

tan4x6mudx=\int_{}^{}{\tan^{4}x\mspace{6mu} dx =}

A

tan3xtanx+x+c\tan^{3}x - \tan x + x + c

B

13tan3xtanx+x+c\frac{1}{3}\tan^{3}x - \tan x + x + c

C

13tan3x+tanx+x+c\frac{1}{3}\tan^{3}x + \tan x + x + c

D

13tan3x+tanx+2x+c\frac{1}{3}\tan^{3}x + \tan x + 2x + c

Answer

tan3xtanx+x+c\tan^{3}x - \tan x + x + c

Explanation

Solution

sinx+c\sin\sqrt{x} + c

12cosx+c\frac{1}{2}\cos\sqrt{x} + c

x+11+x2dx=\int_{}^{}{\frac{x + 1}{\sqrt{1 + x^{2}}}dx} =