Question
Question: \[\int_{}^{}\sqrt{x^{2} + 8x + 12}dx\]...
∫x2+8x+12dx
A
21(x+4)x2+8x+12+2log∣x+4+x2+8x+12∣+c
B
21(x+4)x2+8x+12−2log∣x+4+x2+8x+12∣+c
C
(x+4)x2+8x+12+log∣x+4+x2+8x+12∣+c
D
(x+4)x2+8x+12−log∣x+4+x2+8x+12∣+c
Answer
21(x+4)x2+8x+12−2log∣x+4+x2+8x+12∣+c
Explanation
Solution
Let I=∫x2+8x+12dx=∫(x2+8x+16)−4dx
=∫(x+4)2−22dx=∫t2−22dx=∫t2−22dt. (putting x+4=t⇒dx=dt)
=21tt2−22−21.22log∣t+t2−22∣+c
=21(x+4)(x+4)2−4−2log∣x+4+(x+4)2−4∣+c
=21(x+4)x2+8x+12−2log∣x+4+x2+8x+12∣+c