Question
Question: \[\int_{}^{}{\sqrt{\tan x}dx =}\]...
∫tanxdx=
A
21tan−1(2tanxtanx−1)+221logtanx+2tanx+1tanx−2tanx+1+c
B
21tan−1(2tanxtanx−1)−221logtanx+2tanx+1tanx−2tanx+1+c
C
log(2tanxtanx−1)+c
D
None of these
Answer
21tan−1(2tanxtanx−1)+221logtanx+2tanx+1tanx−2tanx+1+c
Explanation
Solution
Let I=∫tanxdx
Putting tanx=t⇒tanx=t2, we have
sec2xdx=2tdt⇒(1+tan2x)dx=2tdti.e., (1+t4)dx=2tdt⇒dx=1+t42tdt∴I=∫tanxdx=∫t.1+t42tdt=∫1+t42t2dt=∫t4+1(t2+1)+(t2−1)dt=∫t4+1t2+1dt+∫t4+1t2−1dt =∫t2+t211+t21dt+∫t2+t211−t21dt =∫(t−t1)2+21+t21dt+∫(t+t1)2−21−t21dt