Solveeit Logo

Question

Question: \[\int_{}^{}{\sqrt{\tan x}dx =}\]...

tanxdx=\int_{}^{}{\sqrt{\tan x}dx =}

A

12tan1(tanx12tanx)+122logtanx2tanx+1tanx+2tanx+1+c\frac{1}{\sqrt{2}}\tan^{- 1}\left( \frac{\tan x - 1}{\sqrt{2\tan x}} \right) + \frac{1}{2\sqrt{2}}\log\left| \frac{\tan x - \sqrt{2\tan x} + 1}{\tan x + \sqrt{2\tan x} + 1} \right| + c

B

12tan1(tanx12tanx)122logtanx2tanx+1tanx+2tanx+1+c\frac{1}{\sqrt{2}}\tan^{- 1}\left( \frac{\tan x - 1}{\sqrt{2\tan x}} \right) - \frac{1}{2\sqrt{2}}\log\left| \frac{\tan x - \sqrt{2\tan x} + 1}{\tan x + \sqrt{2\tan x} + 1} \right| + c

C

log(tanx12tanx)+c\log\left( \frac{\tan x - 1}{\sqrt{2\tan x}} \right) + c

D

None of these

Answer

12tan1(tanx12tanx)+122logtanx2tanx+1tanx+2tanx+1+c\frac{1}{\sqrt{2}}\tan^{- 1}\left( \frac{\tan x - 1}{\sqrt{2\tan x}} \right) + \frac{1}{2\sqrt{2}}\log\left| \frac{\tan x - \sqrt{2\tan x} + 1}{\tan x + \sqrt{2\tan x} + 1} \right| + c

Explanation

Solution

Let I=tanxdxI = \int_{}^{}{\sqrt{\tan x}dx}

Putting tanx=ttanx=t2,\sqrt{\tan x} = t \Rightarrow \tan x = t^{2}, we have

sec2xdx=2tdt(1+tan2x)dx=2tdt\sec^{2}xdx = 2tdt \Rightarrow (1 + \tan^{2}x)dx = 2tdti.e., (1+t4)dx=2tdtdx=2t1+t4dtI=tanxdx=t.2t1+t4dt=2t21+t4dt=(t2+1)+(t21)t4+1dt=t2+1t4+1dt+t21t4+1dt(1 + t^{4})dx = 2tdt \Rightarrow dx = \frac{2t}{1 + t^{4}}dt\therefore I = \int_{}^{}{\sqrt{\tan x}dx = \int_{}^{}{t.\frac{2t}{1 + t^{4}}dt = \int_{}^{}{\frac{2t^{2}}{1 + t^{4}}dt}}} = \int_{}^{}\frac{(t^{2} + 1) + (t^{2} - 1)}{t^{4} + 1}dt = \int_{}^{}{\frac{t^{2} + 1}{t^{4} + 1}dt + \int_{}^{}{\frac{t^{2} - 1}{t^{4} + 1}dt}} =1+1t2t2+1t2dt+11t2t2+1t2dt= \int_{}^{}{\frac{1 + \frac{1}{t^{2}}}{t^{2} + \frac{1}{t^{2}}}dt + \int_{}^{}{\frac{1 - \frac{1}{t^{2}}}{t^{2} + \frac{1}{t^{2}}}dt}} =1+1t2(t1t)2+2dt+11t2(t+1t)22dt= \int_{}^{}{\frac{1 + \frac{1}{t^{2}}}{\left( t - \frac{1}{t} \right)^{2} + 2}dt + \int_{}^{}{\frac{1 - \frac{1}{t^{2}}}{\left( t + \frac{1}{t} \right)^{2} - 2}dt}}