Solveeit Logo

Question

Question: \(\int_{}^{}\sqrt{\sec x–1}\) dx is equal to –...

secx1\int_{}^{}\sqrt{\sec x–1} dx is equal to –

A

2 log (cosx2+cos2x212)+C\left( \cos\frac{x}{2} + \sqrt{\cos^{2}\frac{x}{2}–\frac{1}{2}} \right) + C

B

log (cosx2+cos2x212)+C\left( \cos\frac{x}{2} + \sqrt{\cos^{2}\frac{x}{2}–\frac{1}{2}} \right) + C

C

– 2 log (cosx2+cos2x212)+C\left( \cos\frac{x}{2} + \sqrt{\cos^{2}\frac{x}{2}–\frac{1}{2}} \right) + C

D

None of these

Answer

– 2 log (cosx2+cos2x212)+C\left( \cos\frac{x}{2} + \sqrt{\cos^{2}\frac{x}{2}–\frac{1}{2}} \right) + C

Explanation

Solution

1cosx1dx\int \sqrt { \frac { 1 } { \cos x } - 1 } d x =

= =

Put = t

= – = dtdx\frac { \mathrm { dt } } { \mathrm { dx } } = 2sin(x2)dx\sqrt { 2 } \sin \left( \frac { x } { 2 } \right) d x = –2dt

So Integral becomes

= 2dtt21- 2 \int \frac { \mathrm { dt } } { \sqrt { \mathrm { t } ^ { 2 } - 1 } } = –2 log t21+t\left| \sqrt { \mathrm { t } ^ { 2 } - 1 } + \mathrm { t } \right| + C