Solveeit Logo

Question

Question: \[\int_{}^{}{\sqrt{\mathbf{2 +}\mathbf{\sin}\mathbf{3}\mathbf{x}}\mathbf{.}\mathbf{\cos}\mathbf{3}\m...

2+sin3x.cos3xdx=\int_{}^{}{\sqrt{\mathbf{2 +}\mathbf{\sin}\mathbf{3}\mathbf{x}}\mathbf{.}\mathbf{\cos}\mathbf{3}\mathbf{xdx}}\mathbf{=}

A

292+sin3x+c\frac{2}{9}\sqrt{2 + \sin 3x} + c

B

23(2+sin3x)2/3+c\frac{2}{3}(2 + \sin 3x)^{2/3} + c

C

23(2+sin3x)3/2+c\frac{2}{3}(2 + \sin 3x)^{3/2} + c

D

29(2+sin3x)3/2+C\frac{2}{9}(2 + \sin 3x)^{3/2} + C

Answer

29(2+sin3x)3/2+C\frac{2}{9}(2 + \sin 3x)^{3/2} + C

Explanation

Solution

Put (2+sin3x)=t(2 + \sin 3x) = t 3cos3xdx=dt\Rightarrow 3\cos 3xdx = dt

2+sin3x.cos3xdx=13tdt=13.t3/23/2+c\int_{}^{}{\sqrt{2 + \sin 3x}.\cos 3xdx = \frac{1}{3}\int_{}^{}{\sqrt{t}dt}} = \frac{1}{3}.\frac{t^{3/2}}{3/2} + c =29.(2+sin3x)3/2+C= \frac{2}{9}.(2 + \sin 3x)^{3/2} + C.